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7-1. Introduction

The transport of ions across cell membranes is essential to life. Most of it is passive, due to
electrical and chemical concentration differences. The electrochemical potential difference is the
key to excitation of the cells, for it governs the opening and closing of channels and drives ionic
flows and therefore governs the transmembrane potential. Ionic channels are remarkably



2 Transport of ions in solution and across membranes
ion-selective, the conductivity for a particular ion being substantially higher than for even rather
similar ions, and ionic flux is passive, driven by the ion’s electrochemical gradient. Ionic pumps,
powered by ATP or by energy gradients for other solutes, are needed to restore the balance.

Cellular excitation drives many processes, the most obvious being contraction of muscle
cells and signalling. The spatial propagation of a wave of depolarization along nerves or along a
muscle cell is a highly efficient means of signal transmission over long distances without
substantial mass transfer. Electrical conductivity of tissues and of membranes plays a role in
regulation of other functions of cells: just as depolarization of a nerve axon leads to a conducted
action potential, and depolarization of skeletal muscle, smooth muscle, and cardiac cells leads to
activation of contraction, the depolarization of the pancreatic beta cell is associated with the
release of insulin.

In nerve cell bodies and in axons the spikes of depolarization are short, one or two
milliseconds. The local depolarizations are propagated along axons or dendrites to carry
information; the neuronal cell bodies serve as integrators of trains of propagated spike
depolarizations from a few or many dendrites and, in turn, if stimulated past a threshold level,
send out spikes of depolarization along a major axon. Each propagated action potential, each
depolarization spike, is due to the passage of a few thousand ions across the membrane, a molar
amount that is so small as to be negligible compared to the ambient concentrations on either side
of the membrane. Yet, to maintain the tissue in steady state, each ion must be moved back across
the membrane, with the expenditure of energy from the hydrolysis of ATP directly or indirectly.
Some ions are pumped back using direct coupling to ATP as the energy source. For example, the
NaK ATPase pumps 3 Na+ out and 2 K+ inward for each ATP degraded to ADP. Other transporters
use the energy from standing gradients, for example, the NaCa exchanger (NaCaX) extrudes
1 Ca++ for 3 Na+ flowing inward down the electrochemical gradient for Na+.

The ionic concentration differences, coupled with the Donnan effect due to the high
concentrations of negatively charged proteins within cells, result in cellular transmembrane
potentials that are negative, defined as the inside potential being negative compared to the outside
or extracellular potential. Thus, “resting” (meaning “unstimulated”) cell membrane potentials are
always negative, ranging from about −10 mV for the erythrocyte to −80 to −90 mV for excitable
muscle cells and neurons.

Starting from the concepts of Chapter 4, concerning “Ions in Solution” and their behavior in
an electrical field, this chapter covers transmembrane potentials due to single and multiple ionic
gradients, the resting membrane potential, action potentials, electrical propagation at the cell
level, and the gradient-restoring pumps and exchangers.

7-2. Ionic fluxes in solutions

7-2.1. Fluxes due to an electrical field in a solution
The flux of an ion due to a gradient in an electrical field follows the same Ohm’s law type
relationships that pertain for other transport processes, given that the concentrations are small
enough, that the activity coefficients are constant and close to unity, and the system is linear. The
velocity of each ion depends on the strength of the field, dΨ/dx, and its mobility, u, which is
inversely proportional to the frictional resistance between the molecule and the solvent, fs, while
the total flux depends also on the number of mobile ions, the concentration, C:
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Transport of ions in solution and across membranes 3
, (7-1)

, (7-2)

where Je = flux per unit cross-sectional area due to electric field, moles s−1 cm−2, Le = electrical
conductance, mhos, Xe = local electrical force or field strength, volts/cm; Ψ = potential, volts;
u = mobility = velocity of the ion per unit potential gradient, cm s−1; C = concentration, molar;
z = valence; F = Faraday, 96,485 coulombs/mole; ℵ Α = Avogadro’s number, 6.0221 × 1023

molecules mol−1; fs = frictional resistance, g ⋅ cm. This latter expression, the rightmost part of
Eq. 7-2, reveals that the mobility is now described by zF/(fs ℵ Α), the reciprocal of the frictional
resistance divided by the charge per unit molecule (the charge, zF, divided by Avogadro’s number,
ℵ Α), thus identifying the Einstein relationship, D = uRT/ |z|F, or D = ℜ T/fsℵ Α, cm2/s.

7-2.2. Flux due to an electrochemical potential gradient
Flux produced by an electrochemical gradient combines the fluxes due to the electrical and
chemical potential gradients:

; (7-3)

where fs is the frictional coefficient (described in Chapters 4 and 5); the activity coefficient (not
shown) is assumed to be unity, so ionic activity = concentration C; the conductance per ion,
L, = ℜ T/fsℵ Α; and Js is the net flux per unit area through a conducting solution, or within a
channel in a membrane, or in slits between endothelial cells. Using the definition of the diffusion
coefficient D = ℜ T/fsℵ Α, this is seen to be the Nernst-Planck equation:

. (7-4)

The result is a combination of Fick’s first law for diffusion down a concentration gradient (a net
flux expression where the flux is passive diffusion), with the effects of a directed force, dΨ/dx,
driving the ion down the electrical field; down means away from the position of highest potential
of the same charge as the ion.

7-3. Transmembrane potentials

7-3.1. The Nernst potential, the single ion case where the flux is zero
Now consider cases where the “gradient” is an electrochemical potential difference across a
membrane. (Due to the fact that one doesn’t know exactly either the thickness of a lipid bilayer
forming a cell membrane or the shape of the electrical field within the bilayer, the word “gradient”
really describes a ∆Ψ rather than a true gradient dΨ/dx).

J e Le X e Le–
∆Ψ
∆x
--------⋅= =

J e Cu
∆Ψ
∆x
--------– C

zF
f sℵ A
-------------- 

  ∆Ψ
∆x
--------–= =

J s
Cℜ T
f sℵ A
--------------– d Cln

dx
-------------

zF
ℜ T
--------- dΨ

dx
--------+ 

 =

J s D– dC
dx
-------

zFC
ℜ T
----------- dΨ

dx
--------+ 

 =
/userA/jbb/writing/903/2005/07elect.30aug07.fm 08 September 2007, 1:51 pm



4 Transport of ions in solution and across membranes
First consider the situation in which there is membrane conductivity for only one ion, such as
K+ with KCl on both sides of the membrane. When the transmembrane ionic flux through an open
channel is zero, the electrolyte is in a steady state with respect to the electrochemical gradient,
that is, the concentration and electrical driving forces are in balance. Hence the expression within
the brackets in Eq. 7-3 must equal zero, since the conductance L is not zero; that is,

. (7-5)

This is the Nernst equation. The 2.303 is loge(10). It assumes equal activity coefficients on
the two sides of the membrane. For univalent ions the slope, 2.303RT/zF, of the
potential-concentration relationship is about 60 mV per decade (10-fold) change in ionic
concentration; for divalent ions it is 30 mV/decade. Values for RT/zF depend only on temperature:
with R = 8.3145 J mol−1 K−1 (or 1.987 cal mol−1 K−1) where K is degrees Kelvin and T(K) is
temperature in degrees Kelvin or 273.16 + T (Celsius). Values of RT/zF are in Table 7-1.

Typical values of Nernst potentials at 37 C, Ex for sodium and other ions are in Table 7-2
With Nao = 140 mM and Nai = 12 mM, then ENa = 61.54 × log10(140/12) = +65.7 mV in heart.

Table 7-1: RT/zF at various temperatures

T, deg C RT/zF, mV
2.303

RT/zF, mV

0 23.54 54.2

20 25.26 58.17

30 26.12 60.15

37 26.73 61.54

Table 7-2: Nernst Potentials in Mammalian Cells at 37° C

Cell type Ion
[Ion]out

mM
[Ion]in
mM

Eion, mV Reference

Cardiomyocyte, ventricle Na 138 10 +70.1 Michaelova ‘01

      at 37C K 4 159.5 −98.5 Michaelova ‘01

Ca 2 2 x 10−4 +125.1 Michaelova ‘01

Renal tubule epithelium. Na 140 35 + 37

     at 37 C K 5 130 - 87.1

Ca 2 1 x 10−4 +132.3

d Cln
dx

-------------
zF
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---------dΨ

dx
--------+ 0

Ψ1 Ψ2– ∆Ψ ℜ T
zF
--------- C2 C1⁄( ) 2.303

ℜ T
zF
---------log C2 C1⁄( )10=ln

=

= =
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Transport of ions in solution and across membranes 5
7-3.2. Current-voltage relationships of ionic channels
A membrane has capacitance of about 1 µF/cm2, a consequence of the form of the phospholipid
bilayer, two layers of hydrophilic terminal phosphate groups separated by a very thin layer of
insulating fatty acid tails; the insulating part is effectively about 2.3 nm thick, given a dielectric
constant of about 2.1 for hydrocarbon chains. (The membrane capacitance is difficult to measure
accurately, so this value of 1 µF/cm2 is used everywhere, for any cell membrane. However, Sachs
(1994) has found that a better value for mammalian cardiac cell membranes is about 0.6 µF/cm2.)

An equivalent circuit for a pore through a membrane is shown in Fig. 7-1. The initial charge,
Q coulombs, on the capacitor is V(t = 0), volts, times the capacitance C, farads. The rate of
discharge dV/dt is the current, amperes or coulombs/second, divided by the capacitance, and,
given that the current can only flow through the resistance, is given by Eq. 7-6, from Ohm’s law:

. (7-6)

Squid Giant Axon Na 460 49 + 56.4 Hodgkin,1951

      at 18.5 C K 22 410 - 73.5 Hodgkin,1951

Cl 540 40 - 65.4 Hodgkin,1951

Human Endothelial Cell Na 140 20

      at K 5

Ca 2 1 x 10−4

Figure 7-1: An RC circuit: a resistor R and a capacitor C, equivalent to a membrane.
The discharge of a potential V across the membrane is a monoexponential process with
time constant equal to RC.

Table 7-2: Nernst Potentials in Mammalian Cells at 37° C

Cell type Ion
[Ion]out

mM
[Ion]in
mM

Eion, mV Reference
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6 Transport of ions in solution and across membranes
The solution of this ordinary differential equation, dV/dt = −V/RC, shows that the potential
dissipates exponentially, given that R and C are constant:

, (7-7)

in which form it is apparent that RC is the time constant for the exponential decay.
When there is a single ion carrying the current across the membrane with the driving force

being a difference in the concentration of the ion on the two sides, the system acts like a battery,
holding the voltage at the Nernst potential. Since there is no counter-ion flow, then when the
ion-specific channel is opened a few thousand ions flow across, charging the membrane, and when
the Nernst potential is reached the flow stops, but the battery remains charged. The diagram of
Fig. 7-1 must then be revised, as shown in Fig. 7-2, and the diminution of charge of the capacitor
is

, (7-8)

where gK is the conductance, in Siemens or ohms−1, for potassium, and VK is its Nernst potential
from Eq. 7-5. A brief exercise is to show that RC has the units of time. Use the Terminology
(Chapter 1) to provide conversion factors.

Example Problem. Four sets of situations are diagrammed in Fig. 7-3. The situations are the
currents resulting from differing combinations of a passive leak conductance and a
voltage-dependent conductance in parallel. Write a single program to reproduce all of the
situations merely by changing the parameters. The circuit diagrams in the figure are equivalent to
only the left branch of the circuit in Fig. 7-2, so you may assume that the current is in steady state.
Determine the observed current as a sweep is made through a voltage range from −150 mV to
+150 mV. Use a potassium conductance gK of 1 mS/cm2.

Hint: Make use of the Boltzmann relation for the fraction of open channels:

Figure 7-2: Equivalent circuit for a membrane current discharging while the potential is
maintained by a battery. In the case of the only channel with non-zero conductance
being potassium, the battery potential is the Nernst potential for K+, which is
maintained by the NaK pump, the NaK ATPase.
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Transport of ions in solution and across membranes 7
, (7-9)

where E is a potential difference between the membrane potential, Em, and the potential at which
the channel is half open, Echan; zg is the number of charges per channel protein that are moved
across the membrane with a voltage jump; qe is the elementary charge, kB is the Boltzmann
constant, and T is temperature, degrees Kelvin. Note that kBT/qe = RT/F.

Answer to Problem. The program describes a voltage-independent leak conductance and
conductance via a voltage-dependent channel, without a capacitance. The solutions are not
time-dependent, and require only algebraic equations. JSim code that can be used with different
parameters for each of the I-V relationships in the Figure 7-3 is given in Table 7-3.

For A, choose values for the conductance g with ratios of 1:2:3.
For B, change the concentrations of potassium on the two sides.

Figure 7-3: Current voltage relationships for a membrane with a single channel type,
using Eq. 7-8. The voltage range from −100 mV to +100 mV covers the important
biological range for most excitable cells. (Figure from Hille, 2001, Figure 1.6, page 19,
with permission.)
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8 Transport of ions in solution and across membranes
For C, set the channel conductance to be at 50% open at −30 mV. Set the leak conductance to
a small value. Notice the slopes of the current voltage relationships in the different regions. For
this result make the number of charges on the channel gate large to get a very sharp jump from
closed to open.

For D, use a small number of charges on the channel gate. Try two different values for the
voltage for 50% open. (Remember that each channel is either open or closed, so a conductance of
30% of maximum means that 30% of a large number of channels are open.)

Nonlinear ionic conductances. A problem with the linear current/voltage relationship of Eq. 7-8
is that not all channels demonstrate linearity. Linearity would be expected if electrochemical

Table 7-3: Voltage-dependent currents for a leak and a channel

JSim v1.1    //Vboltzmann.mod
// Program for potassium conductance versus voltage with gated channel
// Model for monovalent cation in water driven by electrochem gradient
// Membrane separates 2 regions of fixed concentrations, Ko and Ki
// Solute activities are unity. Currents reach S.S. instantaneously
// Single channel conductance about 300 pSiemens; 10^6 chan -> 300 uS.

import nsrunit; unit conversion on;
math Vboltzmann {realDomain Em mV; Em.min = -150; Em.max= 150; Em.delta=1;
//PARAMETERS are defined here, with units. //precedes comments:
real gKleak= 0.0003 siemens/cm^2,    //Permeant bkgd leak =10^6ch/cm^2
     gKstep= 0.0010 siemens/cm^2,      //Max Perm for gated channel. One Siemen = 1/ohm
     Am = 1 cm^2,                                  //Surface area of membrane
     Ko = 5 mM,   Ki = 150 mM,            // K concns outside and in
     R  = 8.31441 J*mol^(-1)*K^(-1),     // gas constant
     Temp = 310.16 K,                              //37C
     RT = R*Temp,                                     //19.340*10^6 mmHg*cm^3*mol^(-1)at 37C
     Farad = 96485 coulomb*mol^(-1),       //Faraday
     qe = 1.6022e-19 coulomb,                       //elementary charge
     //Nav= 6.0221e23,                                     //Avagadro’s #, no.molecules/mole
     kB =1.3807e-23 volt*coulomb*K^(-1),      //Boltzmann’s const., J*deg^-1
     RToF  = (1000 mV/volt)*RT/Farad,              //mV, RToF=26.73 mV at 37C,
     zg    = 10,                                                          //# gating charges per channel
     boltzg= (0.001 volt/mV)*zg*qe/(kB*Temp),     //1/volt, RToF = kB*Temp/qe
     valence = 1,                                                         // boltcheck = qe/(kB*Temp),
     RTozF = RToF/valence,                                       //RTozF  = RT/(Farad*valence), mV;
     VK    = 2.302585*RTozF*log(Ko/Ki),                //mV, ENernst for K, mV
     EKchan= - 40 mV;                                               //mean Em for chan opening, mV
// VARIABLES defined here, with units:
  real Jelect(Em) amp; real zero(Em)=0;                   //zero(Em) is for plotting a level
// ODEs:                                                                  //Area*(Siemens/Area)*V= Amp
     //gK  = gKleak + gKstep/(1+exp(-boltzg*(Em-EKchan))) siemens/cm^2;
    Jelect = Am*(Em-VK)*(gKleak + gKstep/(1+exp(-boltzg*(Em-EKchan))));
}
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Transport of ions in solution and across membranes 9
gradient were the sole determinant. The local electric field within the channel, however, must also
play a role, and voltage-dependent changes in the conformational state of the channel protein play
an important role. What Goldman surmised is that the local strength of the electrical field must be
a dominating influence, and on that basis he derived a solution for the simplest case, that of a
linear gradient in potential along the channel, the constant field approximation, discussed in the
next section.

The other problem created by having voltage-dependent conductivity is that the nice
exponential relationship of Eq. 7-7 is no longer valid. Experimentally, this was approached by use
of the “voltage clamp technique”, where the transmembrane voltage is held constant at chosen
levels, and then step changes are made in the voltage in order to observe the currents. Since this
leaves the prevailing electrochemical gradient as a driving force for current, the technique allows
the examination of the conductance for a current at the moment after a voltage change, and allows
the examination of the time course of the current decay at the chosen clamped voltage. If one
clamps the transmembrane voltage at a level more positive than the Nernst potential, then a cation
current will be outward; if one clamps at a level negative to the Nernst potential the cation current
is inward. Thus at V(clamp) = 0 mV, and using the cation concentrations given at the beginning of
the chapter, a sodium current will flow inward, and a potassium current will flow outward.

7-3.3. The constant field approximation
A difficulty in applying the Nernst-Planck expression (Eq. 7-4) is in knowing the local,
intramembrane gradients dC/dx and dψ/dx through the membrane. The simplest approach, good
enough for large pores where the effective diffusion coefficient is the same as in the bulk fluid,
assumes a linear gradient (constant field), in which case the concentration C no longer represents
the local concentration at a point but rather is the average within the pore, C = (Co + Ci)/2, where
Co and Ci are outside and inside concentrations, and ∆x is membrane thickness or channel length:

, (7-10a)

or using the definition for permeability, P = D/∆x,

. (7-10b)

Goldman (1943), rearranged Eq. 7-10a for the steady-state condition of constant flux:

, (7-11)

for which the solution is

, (7-12)
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10 Transport of ions in solution and across membranes
where the left or inside boundary condition is C(x = 0) = C1, and position x runs from 0 to ∆x. The
boundary condition at the right boundary is C(x = ∆x) = C2, the outside concentration. Then
Goldman, assuming that the gradient was uniform (linear, the constant field assumption), and
therefore that the gradients in Ψ and C were governed strictly by the conditions in the bulk phases
on either side of the membrane, integrated across the membrane to get

, with . (7-13)

Js is a net flux per unit surface area of a membrane, not a unidirectional flux. V is the
transmembrane voltage Ψ1 − Ψ2; β is dimensionless; the permeability P has units cm/s, so the
flux Js has the units of P times C or mol s−1 cm−2. The fluxes for a range of ∆Ψ and ∆C are shown
in Fig. 7-4 for a monovalent cation (z = +1) for which the membrane permeability is 10−5 cm s−1.
Positive flux is from side 1 to side 2; with a ten-fold ratio of concentrations, C1/C2 = 10, the flux
must be zero at the Nernst potential, at about +60 mV. With a ratio of 1, the Nernst potential is
zero and with C1/C2 = 0.10, it is −60 mV. The slope of the line, Js versus ∆Ψ or Js/∆Ψ, is
determined by P; Eq. 7-13 reduces to Js = P(C1 − C2) when ∆Ψ = 0.Although it seems highly
unlikely that the field inside a membrane-spanning protein forming a channel should be linear,
experimental observations on natural and artificial membranes made with a variety of
concentrations and ions affirm the veracity of Eq. 7-13 and the applicability of the constant field
assumption.

The flux density Js, with units moles per unit area per unit time is translated to a current by
taking into account the number of charges per mole:

i, current density per unit area, amperes ⋅ cm−2 = zFJs, moles ⋅ sec−1 cm−2. (7-14)

Figure 7-4: Flux versus transmembrane potential for a univalent cation using Eq. 7-13.
See text. (Figure from Glaser, 2000, with permission.) The intercepts of the three curves
on the voltage axis are the Nernst potentials for the individual cases.
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Transport of ions in solution and across membranes 11
Since the β in Eq. 7-13 contains zF already, this explains why the term z2F2 often appears in
current equations.

. (7-15)

7-3.4. The case of a neutral particle
When z = 0, Eq. 7-13 and Eq. 7-3 both reduce to Fick’s first law for diffusion in the presence of a
concentration gradient:

. (7-16)

From the expression for D, D = ℜ T/fs , from Stokes’ Law for spherical molecules, fs = 6πrη,
and taking particular values, for r = 0.3 nm and η = 1 cP:

This estimate of D is a good approximation for small solutes; it does slightly overestimate the
diffusion coefficient for sucrose, which has a molecular radius of about 0.25 nm, and this is really
to be expected since sucrose is a rough prolate ellipsoid, American football shape, not a sphere,
and has an axial ratio of about two. (See Chapter 5, Frictional coefficients.) The sources of error
can only be in the frictional coefficient because the rest of the terms are physical constants. (The
hydrodynamic formulation itself may err; if the solute is not spherical fs increases; particle
flexibility usually reduces fs , and the pore may not be a nice cylinder.) For other than unit area,
the absolute flux js = −DA dC/dx, as before, and js = Js × A.

7-4. The resting transmembrane potential, ER

“Resting” means that the cell is not being stimulated or in the midst of an action potential.
Currents flow, for there are almost always gradients and always leaks. The membrane potential is
governed by the prior history (capacitance, ionic composition) and by the balance of inward and
outward currents of charged solutes and ions. For most cells the resting transmembrane potential
is governed mainly by the potassium potential since at this voltage (-10 to -80 mV depending on
cell type) the conductivity for potassium is higher than for other cations, and chloride
conductance is high and its distribution is passive. Because there is a transmembrane
concentration difference maintained by the ATP-driven sodium-potassium exchange pump, the
NaK ATPase, the situation is like the potassium-driven battery diagrammed in Figure 7-2. (The
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12 Transport of ions in solution and across membranes
-ase suffix signifies that ATP is hydrolyzed to provide the energy stored as a high energy
phosphate bond to drive the pump.) The pump is electrogenic, meaning that operating it causes a
potential to be generated across the cell membrane. The pump extrudes 3 Na+ ions for each 2 K+

ions carried into the cell, a stoichiometry of 3 to 2; the normal direction of the pump, driving more
cations out than in, creates an imbalance with fewer cations inside than outside, and therefore
creates an inside negative transmembrane potential. Muscle and nerve cells normally have resting
potentials, ER, of −70 to −90 mV, while epithelial and endothelial cells are observed to have ERs of
−20 to −50 mV.

Problem. If ER is −90 mV in a cardiac cell, and if all cation conductances except that for K+ are
zero, and [K+]o is 5 mM, what is the intracellular concentration [K+]i? Use the Nernst equation.

7-4.1. Goldman-Hodgkin-Katz expression for the resting potential
Eq. 7-13 was derived for a single ionic species, and would suffice for calculating the resting
membrane potential if potassium were the only ionic leak or open channel. When more than one
ion contributes to the membrane conductance, then all the currents must be collected together,
accounting for the valence of each ion, and giving a net current of zero:

, (7-17)

where Pj = Dj/δ, the diffusion coefficient in the channel for the jth ion divided by the channel
length, δ. Applying this to Na+, K+, and Cl− channels, an equation for the resting potential with
zero net current is

. (7-18)

Unlike the Nernst Equation, which can be derived on thermodynamic principles, the
Goldman-Hodgkin-Katz (GHK) expressions for currents and for the resting potential are derived
through specific assumptions incorporated into the model for a constant field within the channel.
Other models have been explored; this one’s popularity is due to its simplicity; it is in practice
pretty good. The chloride component is often omitted because chloride permeability is so high
that chloride is usually in electrochemical equilibrium and does not influence the resting potential.
Calcium leaks are relatively small and, while commonly ignored, can be incorporated into the
expression, accounting for the valence of 2 (Sperelakis, 1979).

Other contributors to the ER are, however, not to be neglected so easily. Equation 7-18 is for
a steady state in which the chemical potentials are maintained and the leakage currents dominate.
However, consider that in the same steady state, the maintenance of the imbalances in
concentration is going on simultaneously and therefore there must be restoring currents of the
same magnitude as the leaks. The dominant one is due to the sodium pump, the NaK ATPase,
which is electrogenic since it drives out 3 Na+ for each 2 K+ it carries in. Lauger (1991) advocates
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Transport of ions in solution and across membranes 13
following Mullins and Noda (1963) to modify the GHK equation to account for the stoichiometry
of the pump, rp = 2/3, as follows:

. (7-19)

Another version makes good sense since the normal operation of the pump for net efflux,
dependent on the pump rate, is to consider the ATPase current as an additional outward current
like those for Na+ and for K+ and therefore to add it to the numerator of Eq. 7-18.

. (7-20)

This approach is discussed in detail by Sperelakis (1979). In Eq. 7-20, ER appears on the right
side as well as on the left, but since the pump current itself is small, ER can be guessed
approximately when solving the expression for the left side ER, and the process iterated if the
guess is not close enough. As Lauger (1991) pointed out, the pump current should not have more
than a 10 mV influence in the steady state, but it is always hyperpolarizing when ER is near EK
and has the possibility of pushing ER to levels below EK. Experimentally, poisoning the pump with
ouabain reduces the membrane potential by about 8 mV, in accord with expectations.

Some interesting experiments have been done that illustrate the pump’s remarkable power.
An incidental observation in one of our studies (on the effects of raised [Ca]i on PK;
Bassingthwaighte, Fry and McGuigan, 1974), in which cooling cardiac tissue to less than 10 C for
several hours stopped the pump, and so loaded the cells with sodium, was that upon rewarming
without stimulating the cells the membrane potential hyperpolarized from about −40 mV to below
−120 mV as the pump extruded the excess sodium. A similar result was found in skeletal muscle
upon resupplying external potassium after the intracellular sodium levels had risen during a
few-hour period in low potassium and, even more interestingly, in fresh muscle tissue taken from
hypokalemic rats when put into normal 5 mM K+ solutions (Akaike, 1979, and earlier papers).
The most negative hyperpolarizing potentials reported are those by Tamai and Kagiyama (1968);
they found left ventricular muscle hyperpolarization to −260 mV during rewarming after sodium
loading by prolonged cooling, although such high values have not been reaffirmed. The
ATP-supported pump is driven by high intracellular sodium levels, so either the pump current
strikingly overwhelms the leak currents and dominates the transmembrane potential, or the
intracellular concentration is reduced below normal values; unfortunately the experiments don’t
apportion the importance of these two possible mechanisms.

Problem. If all cation and anion conductances except those for K+ and Na+are zero, ER = - 80 mV,
[K+]o is 5 mM, [K+]i is 150 mM, [Na+]o is 140 mM, and [Na+]i is 14 mM, what is the ratio of the
leakage currents? (Do this part in your head.) What is the ratio of ionic conductances PNa /PK?
(Answers: 1/14; less than 1/14, because the driving force for Na is much higher.??calc??)
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14 Transport of ions in solution and across membranes
7-4.2. Gibbs-Donnan equilibrium and the Donnan potential
The membrane potential at rest is not governed solely by the Nernst potentials of any open
channels; it is also governed by the presence within the cell of charged species which cannot cross
the membrane. The presence of impermeable solutes having a net charge causes an imbalance
among the ionic solutes which can cross the membrane. In cells, the internal charge-carrying
molecules are proteins, which generally have strongly negative net charges and therefore also
buffer the positive charges, particularly H+.

A Gibbs-Donnan equilibrium will be set up across a membrane when it is impermeable to
one charged species but permeable to others. For a simple introductory example, put Congo Red,
Na+ R−, in compartment A across a semipermeable membrane from NaCl in compartment B. The
membrane is impermeable to the Congo Red, R−, a large molecule, but is permeable to Na+ and
Cl−. Let the compartment volumes be equal, VA = VB:

Initially, let [Na+]Ai = [R−]Ai = 10 mEq/1, [Na+]Bi = [Cl−]Bi = 20 mEq/1, where subscripts A
and B indicate the compartment, the subscript i is initial, and f indicates final. Na+ and Cl− can
move to reduce the concentration gradient, but total electroneutrality must persist, i.e., for each
Na+ that moves, a Cl− must accompany it.

At equilibrium the membrane potential difference ∆Ψ can be calculated in accordance with
the Gibbs-Donnan equation for either Na+ or Cl−, because the membrane is permeable to both:

.

∆Ψ = (RT/Xe)(1/[+1]) ln([Na+]B/[Na+]A)f for sodium at final, f, steady state; ∆Ψ = (RT/Xe)(1/[−1])
ln([Cl−]B/[Cl−]A)f for chloride and, putting these together, ln([Na+]B/[Na+]A)f =
−ln([Cl−]B/[Cl−]A)f. Considering electroneutrality, NaB = ClB and NaA = ClA + RA, then from
(NaB/NaA) = ClB/(ClA + RA),

, (7-21)

the Gibbs-Donnan equation, the last term being obtained by substituting for CB.
Cross-multiplying the first two terms gives

.

Since compartment volumes VA and VB are equal, and since very nearly equal amounts of
Na+ and Cl− are transferred (very little net charge is transferred in bringing about sizeable voltage
changes), one can consider equal amounts, Y, to be transferred. Y can be calculated:

Na+[ ] Ai

R−[ ] Ai
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RT
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--------- CB CA⁄( )ln=
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Transport of ions in solution and across membranes 15
.

Use these to substitute for the final values in the Gibbs-Donnan equation:

.

Initially, [Na+]Bi = [Cl−]Bi and [Cl−]Ai = 0 in this case. Therefore, ([Na+]Bi − Y/VB) =
([Na+]Ai

+ Y/VA) ⋅ Y/VA. Multiplying,

,

so that when VA = VB the X2 terms cancel and

. (7-22)

Thus, finally, [Na+]Bf = 12, [Cl−]Bf = 12, [Na+]Af = 18, [Cl−]Af = 8, with [R−]A unchanged at 10.
This equilibrium will be maintained only if the volumes of A and B are held constant. It is

obvious that an osmotic gradient remains. The potential difference across the membrane is now
(assuming equal activity coefficients in A and B)

.

Problem. The problem, a complicated one, is to find a transient and steady-state solution
accounting for both osmolarity and charge. Try writing the differential equations for solutes,
solvents and electrical potential difference, given a pressure-volume relationship for the cell.
Consider two extreme cases, one solving for ∆p for completely rigid cells A and B, one for
completely distensible cells in which no ∆p is generated, and a third case using an intermediate
degree of stiffness allowing changes in volume and pressure. The existence of a Donnan potential
does not depend on the presence of a cell membrane, but only on the maintenance of a region
where there is protein or charged gel distinguished from a surrounding solution.

Problem. If you should fail to find a steady-state solution to the previous problem, discuss why
this might be. How would you design the cell in order to reach a steady state?
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16 Transport of ions in solution and across membranes
7-4.3. Electrodiffusion

7-4.3.1. An example problem with its answer
Consider the flux of a dissociated uni-univalent salt in an electric field along an open pore
traversing a membrane.

Take the following one-dimensional equation for flux per unit area of an ion in a solution:

. (7−23)

1. Identify all symbols, and give units. (Hint: See Chapter 1, Terminology.)
2. What changes, if any, would be required to make the equation applicable to charged

membranes? (Hint: Integrate across the membrane to define ∆C and ∆Ψ.)
3. Apply the equation to the diffusion of a single uni-univalent salt in the absence of

convection. Obtain an expression for (1) the electrical potential difference produced, and
(2) the flux of the salt.

4. Still with reference to a single uni-univalent salt, consider the situation in which the mobility
of the anion is zero. What will be the expression for (1) the potential difference, and (2) the
flux of the cation? What physical conditions might cause the mobility of the anion to be zero
in a porous membrane?

5. Show how this equation reduces to Fick’s first law when applied to the diffusion of a
nonelectrolyte in the absence of convection.

7-4.3.2. Answers to the question

a. Identify all symbols. The equation, Eq. 7-23, is for flux per unit surface area, Ji, of an ion in
the x direction and gives the sum of fluxes due to diffusion (first term on right), due to electrical
field (second term on right), and due to convection of the solution itself (third term).

ui is the mobility within the channel (velocity per unit voltage gradient in cm s−1/(V/cm)),
Ci is concentration (millimoles/cm3or M),
R is the gas constant (0.082 liter atmos/(mol deg K) or 8.31441 Joules mol−1 deg−1),
T is the temperature (deg K),
zi is valence, +1 and −1 in this case,
F is Faraday’s constant (96484 coulombs/mol),
Ψ is the electric potential (volts),
Ji is the ion flux (mol/(s cm2)),
Jv is the volume flux, solvent + solute (ml/(s cm2)),
x is distance (cm).

The subscript i refers to the ith species; “ln” refers to logarithm to the base e.

b. What changes need to be made if the membrane is charged? None really, except that
specifying the conditions at either side of the membrane may help to simplify the problem by
defining ∆C and ∆Ψ at those points. The equation is applicable to charged membranes in the
current form. However if there were charges within the internal structures of the membrane, these

J i uiC i
R– T

ziF
-----------

x∂
∂

C iln
x∂

∂Ψ+ 
 = J vC i+
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Transport of ions in solution and across membranes 17
might affect the diffusivity or mobility of the solute through the membrane. For convenience, we
can rewrite the equation in the question as

, (7-24)

where we have used the Einstein relation:

. (7-25)

This diffusion coefficient is the same as the diffusion coefficient in the bathing solutions only if
there is no steric hindrance or local charge density effect within the membrane, that is, the
reflection coefficient is zero. Note the relationship to the Einsteinian diffusion coefficient given in
Eq. 7-25 as compared with that given in Chapter 5 for uncharged spherical particles:

. (7-26)

c. Uni-univalent salt in the absence of convection. If we assume that there is no net electrical
current (that is, the system is open), then the flux of anion and cation must be equal: J− − J+ = 0.
Using Equation 7-24 for each ion and using J+ = J−, which is true after a brief moment even if
their mobilities differ, gives

, (7-27a)

where the ion concentrations are defined by

and (7-27b)

, (7-27c)

where Co is the bulk salt concentration. Since both must be much smaller in magnitude than Co
to preserve charge neutrality, then C+ is nearly equal to C− and both are equal to Co. Then
Equation 7-27a reduces to approximately

. (7-28)

Integration over distance 0 to x gives
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18 Transport of ions in solution and across membranes
, (7-29)

if we define the potential at x = 0, Ψ(0), to be zero. Using the Einstein relation for the mobility
and accounting for the valences, we get

. (7-30)

Therefore the potential drop (excluding any boundary layers where  may not be small
compared to ) is given by

. (7-31)

We label this ∆Ψdiff, a diffusion potential, because it is the potential that is due to differences in
diffusibility or mobility of the two mobile species. If the mobilities are equal, then ∆Ψdiff = 0; this
is the case for KCl, and is the basis for its use in electrodes: KCl electrodes have almost no artifact
in measured voltage due to diffusion potential, because the diffusion coefficients for K+ and Cl-

are so close, 1.96 and 2.0 . 10-5 cm2/s at 25 C.
To find the flux of salt we need to return to Eq. 7-2. For a uni-univalent electrolyte we get

, (7-32)

. (7-33)

We can take the gradient of each of these equations to get

, (7-34a)

. (7-34b)

If we multiply Equation 7-34a by D+ and Equation 7-34b by D− and add the two together we get

. (7-35)

If it can be shown that
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Transport of ions in solution and across membranes 19
, (7-36)

then Equation 7-35 reduces to

, (7-37)

where the effective diffusion coefficient De is given by

. (7-38)

Then, inequality expressed in Equation 7-36 can be approximated by

, (7-39)

where ρu is the net charge density (positive minus negative) and ρo is the total charge density
(positive plus negative). Equation 7-39 will be true for almost all cases of biological interest. Then
the flux of the salt can be given by

. (7-40)

When the membrane is not charged but there is a charge difference across the membrane, an
alternative answer is that cation flux = anion flux (to preserve electroneutrality),

. (7-41)

Then the charge fluxes identified from Equation 7-32 and Equation 7-33 can be rewritten:

, (7-42)

. (7-43)

Since J− = J+, and , the concentration of the salt, then
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20 Transport of ions in solution and across membranes
. (7-44)

Finally, the potential difference between the two bulk solutions of concentrations C1 and C2
obtained by integrating from side 1 to side 2 is

, (7-45)

and ∆Ψ will be positive if the cation moves faster than the anion, and vice versa, or will be zero if
anion and cation have the same mobility. The flux calculation, accounting for electroneutrality, is
obtained by substituting the dΨ/dx of Equation 7-44 into Equation 7-42 and Equation 7-43:

, or (7-46)

. (7-47)

d. Mobility of the anion is zero. First the simple answer: This answer assumes that there are no
internal charges within the membrane, but that there is a potential difference across the
membrane. From Equation 7-45, by putting the anion mobility to zero, the solute flux is forced to
zero after the tiniest flux and we get the transmembrane potential due to the permeability to the
univalent cation with zi = 1, its Nernst potential:

. (7-48)

For example, with potassium concentration inside a cell at 150 mM and outside at 5 mM, and
with potassium permeability high compared to all other ions, then C2/C1 = 30 and the inside
potential is about −60 times log1030 or −90 mV. (See Chapter 1, Terminology, for the conversions
in the units.) The cation flux goes to zero as soon as the Nernst potential is reached: J+ = 0.

Then a more detailed answer: Assume that the mobility of the anion is finite in the bulk
solvent and only becomes zero within the membrane.

In this case we cannot invoke electroneutrality inside the membrane because the anion
cannot diffuse into the membrane to balance the charge. Therefore we cannot use the Donnan
potential calculations. If we assume that electrolyte concentrations are governed by Boltzmann
statistics (which assumes we are close to thermodynamic equilibrium), we get

, (7-49)

, (7-50)
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Transport of ions in solution and across membranes 21
where r denotes the distance from the interface and Co is the bulk concentration in the solvent far
away from the interface where the potential is defined to be zero. From Gauss’s law we get

, (7-51)

where ρ is the charge density in the solution, Coulombs/cm3 (or = Ci ⋅ F), and ε is the dielectric
constant of the solution. Substituting Equation 7-49 and Equation 7-50 into Equation 7-51 we find

, (7-52)

which is known as the Poisson-Boltzmann equation. Equation 7-52 is nonlinear and difficult to
solve. If we linearize it for small potentials we get the linearized Poisson-Boltzmann equation:

, (7-53)

which has the solution

, (7-54)

where k2 = 2CoF/εRT and 1/k is known as the Debye length. We can find Ψo from electroneutrality
at the interface, which gives

. (7-55)

Therefore the potential in the solvent is given by

. (7-56)

The potential drop across the interface is given by

. (7-57)

The potential drop across both interfaces can then be given by
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22 Transport of ions in solution and across membranes
. (7-58)

Since the cation concentration will be vanishingly small at each interface (from Equation 7-49)
the ion concentration will be vanishingly small inside the membrane, and there will be no drift
field inside the membrane. So the total potential drop will be

. (7-59)

To find the flux we use

, (7-60)

which can be approximated by

, (7-61)

which will typically be very small.

e. Reduction to the Fick’s first law. From the original expression, Eq. 7-46,
considering dΨ/dx = 0, Jv = 0, u = ziFD/RT, and C d lnC/dx = dC/dx, we get

, Fick’s first law. (7-62)

7-5. Patch clamp studies of single-channel kinetics

The single-channel kinetics depicted in Figure 7-3 and calculated in the program in Table 7-3
represent what is observed when there are many channels in parallel; the resultant currents are the
sum of the currents through the assemblage of channels, some of which are open and others,
closed. The basic Boltzmann equation, Eq. 7-9, describes the probability of an individual channel
being open at a given voltage; it does not specify how long it will remain open, only the fraction
of time that it will be open. Sakmann and Neher (1983,1995) pioneered the development of the
patch clamp technique for observing one channel protein at a time, for which they were awarded a
Nobel prize. Observations of a single channel, maintained though the clamping of a tiny patch of
cell membrane to chosen transmembrane voltages, reveal that the channel fluctuates between
opening and closing, as in Fig. 7-5. Because the concentrations of Na+ are not changing, the
currents are the same with each opening. There are no partially open states. The open-state current
flow has the same form as in Eq. 7-8:
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Transport of ions in solution and across membranes 23
, (7-63)

where gNa is now the single-channel open conductance, usually a few picoSiemens. The opening
probability can be measured, after holding the transmembrane voltage constant for a second to
two to reach steady state, from the fraction of time that the channel is open. From the data
obtained over a wide range of voltages one can construct curves of the form shown in Eq. 7-9 and
so estimate the voltage for 50% open probability, ENachan, and the number of gating charges per
channel, zg.

The current-voltage relationships for the particular type of Na channel expressed in the
oocytes used by Zhang et al. (1999) were linear, as demonstrated in whole cell currents, but had
slopes dependent on the pH. As shown in Fig. 7-6, the current was maximal at high pH and was
reduced by lowering extracellular pH. The response to a change in pH was very fast, and was
therefore attributed to an H+ ion binding at an external site. The Hill coefficient was 1.0,
indicating single-site binding. Background for this is in Chapter 6-10.

While Eq. 7-9 implies that when the voltage is stepped to a new level the channel protein
changes shape instantly, one can appreciate that it inevitably takes some time for a channel protein
to adapt to the changed voltage field. The simplest case occurs when the relaxation from one
shape to another changes in proportion to the difference between the past state and the
steady-state shape at the new voltage, for which the lag observed from a current change when

Figure 7-5: Single channel openings and closings as revealed by patch clamp of an
epithelial Na+ channel expressed in a frog oocyte after injection of cRNA for the
channel protein. The patch was held at a transmembrane potential of -40 mV. The
channel opening is almost 100% at pH 7.4 and diminishes to about 25% at pH 4.0.
(From Zhang et al. 1999 , their Figure 8, with permission.)
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24 Transport of ions in solution and across membranes
many channels are operating will be an exponential function with time constant τ. Obtaining the
time constant using single-channel patch clamp techniques requires averaging over many step
responses, so it is easier to find time constants by using voltage clamp on a whole cell where there
are many channels, and the observed currents give the average behavior. Then the steady-state
opening probability will change:

. (7-64)

The time constant τ is ordinarily dependent on the voltage; when voltage is changing
continuously, as it does with each action potential in vivo, then Popen(t) changes continuously
following the expected voltage-dependent steady-state value with a lag of τ (E). This is applying a
first-order lag filter to Popen(t) with a voltage-dependent lag time.

Figure 7-6: Whole cell current-voltage relationships for epithelial Na channels
expressed in frog oocytes. At high pH all are open, but are inhibited by lowering
extracellular pH. “Inhibited” means that opening times are reduced, as was observed in
the patch clamp data in Fig. 7-5. The solid line is for a Hill-type equation for current I
relative to its maximum, I/Imax = 1/(1 + [H+]/pKa)

N, with N=1 for single-site binding
and pKa = 4.6. (From Zhang et al. 1999, their figure 3 corrected, with permission.)
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Channel openings and closings are the result of sometimes fairly complex changes in
conformational state, and there may be a variety of different states that are either open or closed.
When there are only two states, open or closed, but it takes time for the conversion from one to the
other, then the channel can be considered as a two-state Markovian system for which the
Boltzmann expression needs modification to account for the time lag. The time lags normally take
milliseconds and are dependent on voltage, something we will examine in detail later when
describing the Hodgkin-Huxley action potential.

More complexity is common, for there may be multiple conformational states. When
multiple states exist and the energy barriers between adjacent states are small, then these also
influence the kinetics. An example is the observation of fractal kinetics for some potassium
channels. Cole and Moore (1960) observed that the K+ channel of the squid axon appeared to have
a large number of states, up to 25; this was surmised from the shape of the foot of the action
potential. Liebovitch (1989) observed that K+ channels exhibited a peculiar statistical behavior
when observed individually by patch clamp: there was a long-memory correlation structure in the
time series of openings and closings, namely that long opening durations tended to be followed by
another opening of long duration, and short opening durations tended to be followed by short
opening durations. Statistically, processes with such behavior are termed long memory processes
(Bassingthwaighte, Liebovitch and West, 1994; Beran, 1994); these statistics show power-law
correlation, i.e., the degree of correlation falls off as a function of time, observed as a straight line
on a plot of log correlation versus log time lag for the correlation in the autocorrelation function.
These intriguing observations lend credence to the principle that in general one may expect
multiple conformational states. While the case for applicability to some K+ channels is reasonably
good, most appear to be Markovian, i.e., most have two or very few states. The classic Na channel
appears to have four states with similar characteristics over many phyla, and is discussed in the
next section.

Multiple conductance levels are observed in some instances. This appears to be due to
interaction between channels when they cluster together. Clustering of integral proteins is
common, and is the usual thing for gap junctional connections between cells where they form
hexagonal arrays (cardiac myocytes) or strings like spot welds (in endothelial junctions in
continuous capillaries). An example of cooperativity is seen even in an artificial lipid bilayer to
which was added a channel-forming toxin. In this case, the analysis of the individual channel
conductance is more complex, as summarized in Fig. 7-7 . The estimation of the three
conductance levels is accomplished by fitting the observed histograms of numbers of instances of
a particular voltage versus current with an assumed number of Gaussian distributions of currents,
in this case four. The number isn’t arbitrary but is constrained by the data, in particular by the
form of the hump for current level 3 in the middle panel.

The pore characteristics of the beticolin 3 channel were explored by Goudet et al. (1999) by
using non-electrolyte solutes at high concentration (20% weight/volume) to partially obstruct the
flux of charge-carrying ions. The solutes were glucose (hydrodynamic radius 0.37 nm), sorbitol
(0.39 nm), sucrose (0.47 nm), and a sequence of polyethylene glycols of increasing
hydrodynamic radii, the larger of which could not enter the pore. The apparent channel
conductances, shown in Fig. 7-8 A, diminish when non-electrolytes with radii less than about
0.75 nm obstruct current flow through the pore. Since this pore size indicator was the same for all
three conductance levels, we conclude that the pores remain independent of one another so far as
channel size is concerned. The chemical nature and structure of the beticolin 3 are shown in
Fig. 7-8 B and C. The ratio of width to height being a little less than 1/2 would suggest that the
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26 Transport of ions in solution and across membranes
Figure 7-7: Toxin (beticolin 3) channels in an artificial lipid bilayer show three
conductance levels, presumably due to near-neighbor cooperative interaction between
toxin molecules in clusters. Upper panel: Patch clamp currents due to K+ flux in
200 mM K+ solution at membrane potential +100 mV. The three levels are indicated.
Middle panel: Histograms obtained by time-binning are fitted with a sum of four
Gaussian distributions. Lower panel: Mean current voltage relationships for the three
open states for K+. The channels were slightly ion selective, in the order Na+ > Li+ > K+

> NH4+ > TEA+ > Cl−, the order being the same at all three conductance levels, and
indicating that the individuality of each channel was maintained and that channels did
not coalesce to enlarge the central passage. (From Goudet et al. 1999, their Figure 2,
with permission.)
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molecules must align with the channel to enter, and that they cannot rotate freely within it. The
Mg2+ atoms and the oxygens and the size presumably determine the ion selectivity, though it is
small.

7-6. The action potential in excitable cells

7-6.1. Neuronal currents
In excitable cells an action potential is initiated by a depolarizing current. When the degree of
depolarization is sufficient it leads to an increase in the conductance of an ion, usually Na+ or
Ca2+, the influx of which into the cell leads to yet further depolarization, a “regenerative
depolarization”, a prime example of positive feedback.

The nerve action potential was researched and analyzed beautifully by Hodgkin et al.
(1952a,b,c,d,e) following the pioneering work of Hodgkin and Katz (1949) and Cole and Curtis
(1939) and Curtis and Cole (1940, 1942), and is reviewed by Hille (1984, 2001). It serves as a
relatively simple illustration of the time- and voltage-dependence of ionic currents when the
membrane potential is perturbed. Every one of them is directly reproducible from the text and
legends. Since many cell types, and probably at least some of all multicellular species, are
excitable, and the excitation is key to neural control and to contractile cells and therefore to
motion and function, the processes of excitation and its sequelae are central to biology. The
experiments and analyses of Hodgkin and Huxley represent a masterful examination of a
transmembrane current carrier, using systematic quantitative modeling, and the work won the
Nobel Prize. The 1952e paper of Hodgkin and Huxley is not merely a beautiful summary of the
work: it also provides a pioneering example of how to present a model paper, complete with the
reporting of the parameters used for every figure.

Cole’s work showed that the membrane impedance, the resistance to current flow, diminished
greatly during the nerve action potential. The action potential was well underway before the
membrane conductance (the height of the white area in Fig. 7-9) reached its peak. Cole and his
colleagues did not identify the current carriers. What one would say now is that the conductance
signal represents the sum of all the conductances (open channels) at each moment, so the data
from Cole and Curtis (1939) should be explained by the sums of the conductances of all of the
channels open at that moment. It is the differentiation and characterization of two distinctly
different channel conductances by the Hodgkin and Huxley analysis which was so prescient.

See Bezanilla’s website at UCLA (currently http://pb010.anes.ucla.edu/) for a good
introduction to the Hodgkin-Huxley nerve action potential.

The task for Hodgkin and Huxley was to explain a broad set of observations not previously
understood: (1) the basis of the conductance changes during an action potential, (2) the carriers
for the current or currents, (3) the mechanism by which the action potential was propagated along
the nerve axon, and (4) the quantitative basis for the speed of axonal propagation. It was known
that the membrane had a high capacitance, astoundingly high compared to expectations. It was
recognized that the action potential did not merely reduce the membrane potential to zero, but
went into positive values; this was a big hint that more than one ion was involved. Hille (2001)
and Keener and Sneyd (1998) delve into the history. The studies on the squid giant axon opened
the floodgates and gave rise to a surge of research scarcely paralleled until recently with the great
stimulus of genomics. After the H-H nerve was elucidated, cardiac action potentials soon
followed (Weidmann, 1956; Noble, 1962). Single-cell studies didn’t really succeed, with the
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28 Transport of ions in solution and across membranes
Figure 7-8: Beticolin dimer channel. Panel A: Conduction of pore is reduced by neutral
molecules filling the pore. Reduction of ionic conductance by neutral solutes of
differing size indicates a pore size of about 0.75 nm. Panel B: Molecular structure of
beticolin 3 dimer forming a channel. Panel C: Stereo view of the beticolin 3− Mg2+

dimer showing a rectangular pore of about 0.3 by 0.8 nm. The monomers are linked
through the Mg2+ - O2 attraction. The stereo view, C, shows that the rectangular space is
lined with polar oxygens and the two Mg2+. (From Goudet et al. 1999, their Figures 4
and 6, with permission.) [One way to see the stereo view is to center one’s nose about
10 inches from the picture, with eyes looking straight ahead and focusing through the
center of the picture between the two views of the molecule to about 10 inches behind
the page. Relaxing the eyes helps the three-dimensional picture to emerge.]

C
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Transport of ions in solution and across membranes 29
exception of studies on giant cells, until the patch clamp techniques of Neher and Sakmann were
invented in 1980. (Sakmann and Neher, 1995, give a review.)

7-6.2. The Hodgkin-Huxley nerve action potential
The equivalent circuit shown in Fig. 7-2 depicts only one current carrier. The currents through the
capacitor and the resistor sum to zero:

. (7-65)

Given that there are two major current carriers (anticipating what Hodgkin and Huxley
discovered) and some smaller leak currents, this translates to

, (7-66)

where Iapp is an applied current stimulus, and the subscripts Na, K and L represent the two cation
currents and a general catchall leak current (Cl, Ca, etc.). The equivalent circuit is now revised, as
shown in Figure 7-10, to account for three conductances.

By considering the conductance parameters, the g’s, to be time- and voltage-dependent, and
the V’s to change over time, Eq. 7-66 allows for changes in the magnitude of conductances and
driving forces over time; it assumes that the current flux is linearly proportional to the driving
force at each specific value of g, and that the driving force is the electrochemical potential
difference for each ion across the membrane. This is reasonably correct for small local
perturbations induced by small applied currents, Iapp, but deviates from the data when the shift of

Figure 7-9: Conductance increase during excitation of the squid giant axon. The action
potential is the first curve to rise from the baseline, peaks in about 1 ms and returns to
below the baseline in just over 3 ms. The bottom line of pips are 1 ms marks. The
conductance at each moment is the height difference between the top and bottom of the
broad band of the white signal, which starts a half millisecond after the action potential,
rises to a peak coincident with the action potential peak in just over 1 ms and returns to
baseline in about 8 ms. (From Cole and Curtis, 1939, with permission from J. Gen.
Physiol.)
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30 Transport of ions in solution and across membranes
voltage is more than several millivolts. An obvious question occurs: “Why are the currents not
expressed in terms of the constant field assumption?” We return to this later, after examining the
H-H experiments.

Figure 7-10: Circuit diagram for the Hodgkin-Huxley axon. Note that the voltages of
the three “batteries” have sidedness dependent upon the charge gradients. (Redrawn
from Hodgkin and Huxley, 1952e.)
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7-6.3. The voltage clamp methods for measuring transmembrane currents

The perceptiveness of Hodgkin and Huxley was in comprehending the complex relationships
between their observations using the voltage clamp technique (Fig. 7-11) and a reasonable
physical explanation. A key breakthrough was the decision to test the hypothesis that the
potassium and sodium contributions of the currents were independent of each other. They did two
types of experiments which demonstrated the sense of their notion. The first was to perform
voltage clamp protocols to make voltage steps of a set of magnitudes and to record these and the
current tails (the decay of current versus time from the steady-state current response back to the
original baseline), and then to quickly repeat the sequence after removing the sodium from the
external bathing solutions. The difference between the two sets of measured currents, at each
clamp level, must be due to the Na+ current; the current time course after Na removal must be due
to K+ current, as is shown in Fig. 7-12. Hodgkin and Huxley affirmed this later using the Na
channel blocker tetrodotoxin, which is highly selective to that channel and can block it
completely, and does not affect the K channel currents.

A key to the kinetics was to examine the tail current, the current that decays more or less
exponentially on returning the clamp potential to the resting membrane potential or to some other
level below or above the level of the depolarizing clamp step after the currents are activated.
Fig. 7-13 shows that when a depolarizing clamp step is maintained for less than a millisecond, the
dashed line in the upper panel returning to −65 mV after about 0.6 ms, the tail current decays
rapidly. The middle panel shows that the channel conductances were dominated by the Na
channel opening at this early time. In contrast, when the return clamp step is taken later, at 6 ms,
the tail current decay time is much longer, and since there was no apparent Na+ current at this late
time, that decay is attributed to the diminution of the K+ current. From this experiment alone it
may be tempting to believe that the potassium currents at all potentials might have much slower

Figure 7-11: Voltage clamp methods for measuring transmembrane currents in
excitable cells. The feedback amplifier, FBA, has inputs from the observed intracellular
potential, and from signal generators providing the desired intracellular potential. The
FBA output current, which is that which crosses the cell membrane, drives the
intracellular voltage to match the desired voltage. Since this current must use the
available ions and must flow through the membrane channels, it equals the total of the
transmembrane currents. Dissection of the various ionic contributors to the current
requires using a variety of different clamp step protocols, external solution
concentrations, and channel blocking agents. (From Hille, 2001, with permission.)
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time constants than does the Na current, but this is not true, as is revealed by closer examination
of the details.

Figure 7-12: Determining the sodium current, INa, by difference. The difference
current, panel C, is the difference between the two currents shown in panel B, and is due
to a 90% reduction in [Na]o. The estimated total INa is therefore 10/9 times this
difference current. (From Hille, 2001, with permission.)

Figure 7-13: Short and long clamp steps in squid axon. The tail currents are the
responses to the return of the clamp voltage to the baseline, the dashed lines of the
upper panel. The Na tail current, the dashed line of the middle panel, is short. The K tail
current last a few milliseconds.
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Let’s start with the equations for the gNa and gK in Eq. 7-66 (gL is a constant). These
conductances are functions of both voltage, Em, and time; the changes in protein conformational
state are induced by changes in voltage but take some time to occur. The equations are

, and (7-67)

, (7-68)

where the time and voltage dependence of m, h and n are given by empirical equations which
capture the response times observed experimentally over a range of voltages. For example, for n,

, (7-69)

the solution of which illustrates that this is an exponential relaxation from any initial state n0 at a
voltage particular to the new state at the new voltage:

, (7-70)

where n∞ = αn/(αn + βn) and τn = 1/(αn + βn).
The equations for m and h are analogous. The voltage and time dependence of a conductance

variable are combined in the descriptions of α and β. Their description requires numerical values
to be taken from the experimental data fitted by the model. Hodgkin and Huxley considered the
resting potential to be at 0 mV, and depolarization was positive from there. We use modern current
convention with the outside voltage zero and the inside negative, and also shift to mammalian
concentrations: using the conductances they report gives us

, (7-71a)

, (7-71b)

, (7-71c)

, (7-71d)
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, (7-71e)

, and in general, (7-71f)

. (7-71g)

All V’s are in mV, current densities are in µA/cm2, conductances are in mS/cm2, and the time
constants, τ, and the α’s and β’s are in ms. The maximum conductances for the three variables
were gNa = 120, gK = 36 and gL = 0.3, all in mS/cm2. With this transformed voltage reference to
zero voltage outside, with Nao = 143, Nai = the potentials were set at VNa = +64.6 mV,
VK = −88.6 mV, and VL = −60 mV. The steady-state values of the conductance variables and their
time constants are shown as function of voltage in Fig. 7-14.

With these parameter values, the nerve action potential looks like that in Fig. 7-15. The actual
code is given in Table 7-4 for the situation with a constant current input.

7-6.4. Functional behavior of the nerve axon action potential
Giving a strong depolarizing stimulus to the axon at its resting potential guarantees that it will fire,
that is, develop a regenerative action potential. It is “regenerative” because the more the
depolarization, the more the Na channel’s m conductance variable increases. The word
“regeneratively” indicates, in essence, positive feedback: more conductance → more inward
current → more depolarization. Thus, in the upper panel of Fig. 7-15, the upslope dV/dt steepens
as m3 increases, then becomes less steep as h decreases and the K+ current increases. The potential
does not rise all the way to the sodium reversal potential, ENa, because IK is opposing INa and as
INa diminishes IK becomes dominant and drives the membrane potential back toward the resting

Figure 7-14: Steady-state functions for conductance variables, left panel, and for time
constants, right panel, for the H-H-type nerve axon potential, plotted on the modern
conventional voltage scale of zero potential outside and using mammalian
concentrations. Note that τm is scaled up ten-fold.
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potential. (The process thus degrades both the Na and K gradients a little bit, requiring restoration
by the NaK ATPase.)

The peak values of dVm/dt in Fig. 7-15 provide a measure of peak current flow. The current is
Cm ∗ dVm/dt, so with Cm = 1 µF/cm2 membrane area and dVm/dt = 40 mV/ms, using the
Terminology of Chapter 1 for the units and assuming that the current is maintained for 1 ms
(about the amount of time needed for the action potential to reach its peak), the charge
transferred is

,

Table 7-4: Hodgkin-Huxley model

         // Hodgkin-Huxley Model:  (J. Physiol. 117:500-544, 1952)
         // modified to use V as  intracellular potential relative to extracellular space
         // This description uses a constant current input Iext.
JSim v1.1 import  nsrunit; unit msec = 0.001 sec; unit conversion on;
math hh { realDomain t msec; t.min=0; t.max=58.55; t.delta=0.05; // time
       private real Vu   = 1 mV;              // non-dimensionalizing V by V/Vu
       private real msm1 = 1 msec^(-1); // to balance units to tau
//PARAMETERS
real Nao = 143 mM, Nai = 12 mM, VNa = - (60 mV)*log(Nai/Nao),
     Ko = 5 mM, Ki = 150 mM, VK= - (60 mV)*log(Ki/Ko),  VL= - 60 mV,
     Iext = 6e-3 mA/cm^2, Cm = 1 uF/cm^2,
     gbNa = 120 mS/cm^2, gbK = 36 mS/cm^2, gL = 0.3 mS/cm^2;
//VARIABLES defined as functions of time
real V(t) mV, m(t), h(t), n(t), taum(t) msec, minf(t), tauh(t) msec, hinf(t), taun(t) msec, ninf(t);

/*INITIAL CONDITIONS*/ when(t=t.min) {V= - 81.5; m = 0.023; h = 0.319; n = 0.531;}

//ALGEBRA for time constants and steady state functions for gating variables
taum=1/(msm1*(0.1*(V/Vu+50)/(1-exp(-(V/Vu+50)/10))+4*exp(-(V/Vu+75)/18)));
minf=(0.1*msm1*(V/Vu+50)/(1-exp(-(V/Vu+50)/10)))*taum;
tauh=1/(msm1*(0.07*exp(-(V/Vu+75)/20)+(1/(1+exp(-(V/Vu+45)/10)))));
hinf=0.07*msm1*exp(-(V/Vu+75)/20)*tauh;
taun=1 /(msm1*(0.01*(V/Vu+65)/(1-exp(-(V/Vu+65)/10))+0.125*exp(-(V/Vu+75)/80)));
ninf=(0.01*msm1*(V/Vu+65)/(1-exp(-(V/Vu+65)/10)))*taun;

//ODEs:
V:t=(-gbNa*m^3*h*(V-VNa)-gbK*(V-VK)*n^4-gL*(V-VL)+Iext)/Cm;
m:t=-(m-minf)/taum;
h:t=-(h-hinf)/tauh;
n:t=-(n-ninf)/taun;
}

Charges transferred Cm
0

1ms

∫=
td

d
V dt⋅ 1 µF

cm2------------ 40
mV
ms
--------- 1 ms 2.5 1011charges

cm2------------------⋅=⋅⋅=

15 106⋅= charges / cell (for a cell with  r = 8 µm L, 120 µm )=
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Figure 7-15: Hodgkin-Huxley nerve action potential. Normal action potential evoked
with a very minimal stimulus, 6.3 µA/cm2, 0.02 ms pulse stimulus every 10 ms. The
initial Vm was set to −100mV. The rate of rise of dVm/dt is shown in the bottom panel.
The stimuli force dVm/dt to reach 100 mV/ms momentarily. For the initial stimulus in
the series the charge transferred was not enough to trigger a regenerative depolarization.
With a second stimulus an action potential was evoked, with a peak depolarization rate
of about 40 mV/ms (with a peak influx rate of 2500 ions/ms per square micron surface
area). The regenerative depolarizing current lasts longer than the very short stimulus
pulse. The peak rate of rise of the third action potential (following the fourth stimulus at
32 ms)) is 34.5 mV/ms, reduced compared to the other that fired an AP, but this one is
over 2 ms after the stimulus and the rate of depolarization is due solely to the flux
through the Na channel minus some retarding outward current due to increasing K
channel conductance. The fourth is even more delayed, has barely started its renerative
depolarization, and has a lower maximal dVm/dt .The fifth of these minimal stimuli
failed to bring Vm to the stage of regenerative depolarization, and merely decayed, like
the first response.
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From this, if one knows the conductance per channel, one could estimate the numbers of channels
per cell

Because the time required for complete inactivation of h is longer than the action potential
remains above −20 mV, h is never completely reduced to zero. Likewise, even though m activates
rapidly, it does not reach 1.0 during a normal action potential. Consequently it is understandable
that because of the incompleteness of the return to the resting conditions, the shape of the action
potential is somewhat dependent on the rate of firing. Such rate-dependent changes in AP form
are very much more evident in cardiac APs than in nerve.

Changes in the external ionic milieu affect the sensitivity to a depolarizing pulse. Raising
external potassium to 20 mM depolarizes the membrane. While this might at first blush make one
think that the membrane potential, now reduced to −54 mV and close to the −60 mV threshold for
the Na channel activation, would make the cell highly sensitive to mild depolarizing spikes, the
effect is quite the opposite. The reason is that the h variable for Na conductance is now much less
than unity, and the cell is almost unexcitable. Exploring behavior using the computer model is a
valuable tool for gaining insight into the physical and mathematical aspects of the system
resulting in specific behavior. The program in Table 7-4 can be run as it is under JSim, or
downloaded from nsr.bioeng.washington.edu.

7-6.5. Cardiac and other action potentials
 The Hodgkin-Huxley nerve action potential provides the basic Na and K currents for the action
potentials of other cells. It seems likely that the phylogenetic development of these channels was
relatively early and has been passed down from rather primitive organisms, like the nematode
worm Caenorhabditis elegans, all the way to mammals. While the parameter values differ
somewhat from species to species the basic form of the conductance equations remains constant.
What is even more remarkable in the insight of Hodgkin and Huxley is the close analogy between
the kinetic mechanism they surmised might operate for a four-component channel and the
recently elucidated four-module form of the protein.

Nerves and skeletal muscle action potentials in frogs and mammals have a small calcium
current in addition to INa and IK. In cardiac muscle ICa is large and causes a prolonged plateau
phase of depolarization, which in turn prolongs the action potential a hundred-fold compared to a
nerve. The early cardiac AP model of Noble (1962) attempted to explain the long plateau phase of
the AP by a prolongation of the opening of the Na channel. The observations of Beeler and Reuter
(1970) and of Bassingthwaighte and Reuter (1972) clarified the role of an inward calcium current
which provided a better explanation. The calcium current was found to have time and voltage
dependencies analogous to those of the Na channel, but was slower to activate and to inactivate.
Its conductance was moderately high, so the inward ICa was strong enough to offset the outward
IK for over 200 msec, maintaining the plateau phase of the AP near 0 mV before IK took over to
bring about repolarization.

Problem: Given the ionic flux of 2500 ions/ms (legend of Fig. 7-15) and single channel
maximum conductance equal to those of Fig. 7-5, what is the surface density of channels?
(Answer: Single channel current = 0.8 pA = 0.8 x10-12 Coulombs/sec; 1 Coulomb = 6.243 x 1018

elementary charges (z = 1), giving 0.8 pA = 5000 charges/ms, and a min.density of 0.5 chan/µ2.)

2500= charges / square µm surface area.
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7-6.5.1. The Beeler-Reuter cardiac ventricular action potential:
The Beeler-Reuter (1977) model is a four-current model in which there is a

voltage-dependent K+ current, IK1, and time- and voltage-dependent currents, in the style of the
Hodgkin-Huxley model, for inward currents INa, ICa, and an outward current Ix1, which is mainly
potassium. This model described the action potential rather well in terms of these currents, but
parameters that really incorporate the effects of currents, namely those that were unknown at the
time or considered to be very small, were not considered. Thus, while the model gives remarkably
faithful descriptions of the experimental voltage clamp data, it is inevitably found wanting when
the physiological conditions deviate widely from the laboratory conditions. For example there is
no consideration given directly to the modification of the potassium conductances that occurs
when external calcium concentration is changed.

The action potential and other variables are shown in Fig. 7-16. The long action potential of
about 300 ms duration in the left upper panel is due to the prolonged inward currents shown in the
left lower panel, mainly due to ICa, but with a small continuing Na contribution to INa due to the
Na leak current controlled by a constant conductance gNaC. Repolarization occurs when the
combined outward currents, IK1 + Ix1, exceed ICa + INa after about 250 ms.

The code for the Beeler-Reuter model is given in Table 7-5; the ODE’s are written in very
compact form but follow the same definitions as for the HH model (Eq. 7-71f). . For the calcium

Figure 7-16: Beeler-Reuter cardiac action potential model. Upper left: Standard action
potential (red) and ECa − 100 mV (green, the Ca Nernst potential − 100 mV for display).
Lower left: The four currents, iK1 (purple), iNa (blue) which goes off scale, iCa (dashed
green), and ix1 (dashed orange). Right upper: Ca variables, d and f and their time
constants. Right lower: Intracellular Ca, [Ca]i, during the action potential.
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current there is an activation variable d(t,V), which at a constant voltage takes on a value d∞(V),
and an inactivation variable f(t,V), the steady-state value of which is f∞(V), shown in the right
upper panel of Fig. 7-16 along with the voltage-dependent time constants, τd(V) and τf(V). Note
that the time constants are very different, τd(V) being divided by 40 for display and τf(V) being
divided by 500, so it is 12.5 times slower than τd(V).The steady-state shape of d∞ is close to that of
m∞, but with 50% activation at −25 mV. It is not cubed. The inactivation variable f∞ has its 50%
activation at about the same voltage as does d; the consequence of this is that there is, in the
steady state, a window or “notch”centered at −25 mV where the calcium channel remains open.
This has a major influence on the form of the action potential, greatly prolonging it by virtue of
the inward Ca2+ current keeping the membrane potential near zero, and creating the long plateau
phase of the cardiac action potential. The prolonged inward current leads to an increase in
intracellular Cai, right lower panel of Fig. 7-16, which is sufficient to induce contraction. Even so,
this is not a model suitable for use in understanding excitation-contraction coupling because in
reality a large fraction of the Ca2+ which binds to troponin does not come from the extracellular
space but from triggered release from storage in the sarcoplasmic reticulum. In skeletal muscle,
the action potential is much shorter, the Ca2+ influx much less, so that almost all of the
contraction-stimulating calcium comes from the SR release. A further problem with this model is

Figure 7-17: The iNa conductance variables, time constants and currents in the BR
model. Upper panel: Solid lines are m∞ (red), h∞ (blue), and j∞ (green), while the dashed
lines are their voltage-dependent time constants τm(V), τh(V). and τj(V). Lower panel:
Phase plane plots of currents versus transmembrane voltage V during the action
potential. The iK, having no time-dependence, shows no hysteresis. Depolarization
phase: rightward arrows.
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Table 7-5: JSim code for Beeler Reuter cardiac action potential

math brjbb { realDomain t msec; t.min=0; t.max=650; t.delta=0.1; // time
//modified slightly by JBB from Beeler Reuter J Physiol 1977 to use Nernst potentials, but does not
// include any dependence of the K currents, iK1 and ix1, on [Ca]o, as BR did not include it.
       private real Vu   = 1 mV, msm1 = 1 msec^(-1); // to balance units, V/Vu & in the tau’s
//PARAMETERS
real Nao=143 mM, Nai=12 mM, VNa=-(60 mV)*log(Nai/Nao), gNaC = 0.003 mS/cm^2,
     Ko=5 mM, Ki=150 mM, VK=-(60 mV)*log(Ki/Ko), Vrest = VK +0.015*VNa,
     Cao=2 mM, Cai0=2e-4 mM,  tauCa = 150 msec,
     Caconst= 1e-4 mM*msec^(-1)*cm^2/mA, /*=molar flux per volume per current*/
     gbNa=4 mS/cm^2, gbCa =0.09 mS/cm^2,Cm=1 uF/cm^2, clamp_flag = 0, pulsamp=0. 05;
/*VARIABLES */ real V(t) mV, VV(t) mV, VCa(t) mV, Iion(t) mA/cm^2, iNa(t) mA/cm^ 2,
     m(t),h(t),j(t),taum(t) msec, minf(t),tauh(t) msec,hinf(t),tauj(t) msec,jinf (t),
     x1(t),taux1(t) msec,x1inf(t), ix1(t) mA/cm^2, ibx1(t) mA/cm^2, iK1(t) mA/cm ^2,
     iCa(t) mA/cm^2, Cai(t) mM, d(t),f(t),taud(t) msec,dinf(t),tauf(t) msec,finf (t);
extern real Iext(t) mA/cm^2, Vclamp(t) mV;
/*INIT COND*/ when (t=t.min) { m=0.0104;h=0.989;j=0.976;x1=0.0054; d=0. 003;
                       f=0.9999; Cai=Cai0; VV=if(clamp_flag=0) Vrest else Vclamp ;   }
//ALGEBRA for time constants and steady state functions for gating variables
ibx1 = (0.0008 mA/cm^2)*(exp(0.04*(V/Vu+77))-1)/exp(0.04*(V/Vu+35));
taux1=1/(msm1*((0.0005*exp(0.083*(V/Vu+50)))/(1+exp(0.057*(V/Vu+50)))
        +0.0013*exp(-0.06*(V/Vu+20))/(exp(-0.04*(V/Vu+20))+1)));
x1inf=taux1*msm1*(0.0005*exp(0.083*(V/Vu+50))/(1+exp(0.057*(V/Vu+50))));
taum=1/(msm1*((-1*(V/Vu+47))/(exp(-0.1*(V/Vu+47))-1)+40*exp(-0.056*(V/Vu+72))));
minf=taum*msm1*(-1*(V/Vu+47))/(exp(-0.1*(V/Vu+47))-1);
tauh=1/(msm1*(0.126*exp(-0.25*(V/Vu+77))+(1.7/(1+exp(-0.082*(V/Vu+22.5))))));
hinf=tauh*msm1*0.126*exp(-0.25*(V/Vu+77));
tauj=1/(msm1*((0.055*exp(-0.25*(V/Vu+78)))/(1+exp(-0.2*(V/Vu+78)))
       +0.3/(exp(-0.1*(V/Vu+32))+1)));
jinf=tauj*msm1*(0.055*exp(-0.25*(V/Vu+78)))/(1+exp(-0.2*(V/Vu+78)));
taud=1/(msm1*((0.095*exp(-0.01*(V/Vu-5)))/(1+exp(-0.072*(V/Vu-5)))
       +0.07*exp(-0.017*(V/Vu+44))/(exp(0.05*(V/Vu+44))+1)));
dinf=taud*msm1*(0.095*exp(-0.01*(V/Vu-5)))/(1+exp(-0.072*(V/Vu-5)));
tauf=1/(msm1*((0.012*exp(-0.008*(V/Vu+28)))/(1+exp(0.15*(V/Vu+28)))
       +0.0065*exp(-0.02*(V/Vu+30))/(exp(-0.2*(V/Vu+30))+1)));
finf=tauf*msm1*(0.012*exp(-0.008*(V/Vu+28)))/(1+exp(0.15*(V/Vu+28)));
iNa   = (gbNa*m^3*h*j +gNaC)*(V -VNa);
iK1 = (0.00035 mA/cm^2)*(4*(exp(0.04*(V/Vu+85))-1)/(exp(0.08*(V/Vu+53))
       +exp(0.04*(V/Vu+53)))   +0.2*(V/Vu+23)/(1-exp(-0.04*(V/Vu+23))));
ix1 = ibx1*x1;
iCa  = gbCa*d*f*(V-VCa); VCa =-(30 mV)*log(Cai/Cao);
Iion   = iNa+iK1 +ix1 +iCa;

/*ODEs:*/  VV:t = if (clamp_flag=0) - (Iion-Iext*pulsamp)/Cm else (0 mV/s);
                   V    = if (clamp_flag=0) VV else Vclamp;
Cai:t = -iCa*Caconst - (Cai-Cai0)/tauCa;
m:t=(minf-m)/taum; h:t=(hinf-h)/tauh; j:t=(jinf-j)/tauj;
x1:t=(x1inf-x1)/taux1;
d:t=(dinf-d)/taud; f:t=(finf-f)/tauf;
}
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Transport of ions in solution and across membranes 41
its basic assumption that the intracellular concentrations in the cytosol are uniform;
Bassingthwaighte and Reuter (1972) observed considerably larger shifts in the apparent ECa than
are found with the BR model even though the Ca2+ current is too large. The difference is
explicable by including a small subspace at the sites of the Ca channels, namely at the apposition
regions between T-tubular sarcolemma and the cisternae of the SR (sarcoplasmic reticulum); Ca2+

would transiently accumulate within this space before diffusing out into the cytosol.
The Na fluxes shown in Fig. 7-17 are taken from the HH expressions with little modification:

the shapes of the m∞ and h∞ curves are rather similar to those in Fig. 7-14. There is one difference
however, in that τm(V) is 10 times shorter in the BR model than in the HH model. It seems that
this might be a mistake since the authors intended them to be the same; in practice it makes little
difference since even with a slower squid axon τm(V) the upstroke of the action potential is not
slowed noticeably, and the difference is less than the measurement error in the data. The
current-voltage plots in the lower panel of Fig. 7-17 show that INa is activated rapidly and has a
maximum current more than 20 times that of the others, which are all scaled up by a factor of 10
relative to INa.
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42 Transport of ions in solution and across membranes
Fig. 7-18 shows the time courses of the sodium and calcium conductance variables during

the progress of an action potential. The m(t,V) turns on quickly and h(t,V) turns off very soon, so
the transient INa is complete in a few milliseconds. The Ca2+ activation variable d takes over 50 ms
to reach its peak at just less than 1.0, while the variable f diminishes from 1.0 almost linearly
though it is still at about 60% when repolarization occurs. The slow and incomplete inactivation
allows the iCa to remain strong, and thereby prolongs the action potential more than in other
tissues.

Fig. 7-19 shows the potassium conductances, i.e., those for Ik1 and Ix1. The conductance
variable x1 does not reach 0.4 during the action potential, so the product Ibx1 ∗ x1 remains low, and
the current Ix1 = Ibx1 ∗ x1 turns on slowly but ends up having a strong influence on inducing
repolarization.

The BR model stands out as an easy model to work with, and represents the major features of
the action potential. It is also simple, and not demanding computationally, so it can also be used in
programs for the spatial spread of excitation. The Fitzhugh-Nagumo model (Fitzhugh, 1961;
Nagumo et al., 1964) is simpler still, and is also in programs for the spatial spread of excitation,
but is much farther from having a solid physiological basis.

Figure 7-18: Time courses of Beeler-Reuter conductance variables during an action
potential.
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7-6.5.2. Other action potential models:
More advanced cardiac AP models have been developed since. A critical feature introduced

into these is accounting for fluxes due to exchangers and the pumps. Cardiac ventricular action
potential models have developed along three closely related tracks, each attempting to account in
an integrative fashion for a wealth of experimental data on cardiac electrophysiology. The three
closely related tracks are exemplified by (1) the model of Yoram Rudy and colleagues (Luo and
Rudy,1991, 1994a,b and about 10 subsequent papers), which includes ion pumps and exchangers
and achieves overall ionic balance; (2) the model of Rai Winslow and colleagues (Jafri et al.,
1998, 1999; Winslow et al., 1999; Greenstein et al., 2000) and (2a) more recently improved
versions, particularly an independent one built upon the Winslow model by Michailova and
McCulloch, 2001, that includes buffering of the calcium levels by MgATP as well as buffering by
troponin C and calmodulin. These are strong on the electrophysiology but weak with regard to
pumps and exchangers and do not provide long-term sodium balance; (3) the model of Noble’s
group in Oxford (Noble et al., 1998; Kohl et al., 1999, Sakmann et al., 2000) which gives
excellent adherence to data from their own experiments and includes slightly different K+ currents
than the other models as well as being better linked to the effects of H+ ion and metabolism.

[Add JBAP model, with code in an Appendix or on web.]
A current model, developed under JSim, will be made available on the web (at

http://nsr.bioeng.washington.edu, jbAP) concurrently with this book’s publication, and provides

Figure 7-19: Potassium channel conductances. Upper panel: The potassium current iK1
(purple), the mixed, mostly K+, current ix1 (red), and its maximal conductance variable
ibx1 (black). Lower panel: The time constant for ix1, τx1 (red), divided by 1000 and
peaking at 0.6 seconds at about V = −25 mV, and its x1∞ (black). The current
ix1 = ibx1 ∗ x1, where x1 (blue) is the opening probability during the action potential.
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44 Transport of ions in solution and across membranes
ionic balance, buffering of calcium, phosphate balance, and energy balance, but at the cost of
developing the ionic pumps to a new level and requiring more computer time. [This section will
be enlarged in the next revision.]

7-7. Propagation of the action potential

7-7.1. The cable equations
The nerve is a leaky cable. It is composed of a long cylindrical membrane surrounding conductive
cytoplasm, and is itself surrounded by a conductive milieu. The diameter is miniscule compared
to the length, so a one-dimensional approximation works well: i.e., one can assume that the core
has no radial concentration or potential gradients (Rall, 1977), the core conductor assumption.
The circuit diagrams considered for the action potential now need to be augmented to account for
the length of the nerve and therefore for the non-uniformity of the potential with position, as
diagrammed in Fig. 7-20.

 The figure shows a discretized version of a continuous system representing a
one-dimensional cable. It provides a good model for propagation along an unmyelinated nerve. In
myelinated nerves the sites of local transmembrane current flow are not everywhere along the
membrane, but are only at distinct locations, the Nodes of Ranvier, semi-exposed parts of the
axon between successive insulating Schwann cells. Cardiac cells have no insulating layer
surrounding them but, unlike nerve cells, have extensive lateral as well as terminal gap junctional
connections so that cell-to-cell conductance laterally is almost one-third of that axially. This
means that cardiac cells really form a three-dimensional cable.

Weidmann (1952) found that the one-dimensional cable equation described the electrical
spread in cardiac Purkinje fibre (the specialized conducting cells of the heart) as well as it did
nerve conduction. Axial electrical conductivity is evident in all cells as electrotonic spread of

Figure 7-20: Circuit diagram for a one-dimensional cable representation of a nerve
axon. The discretization of x, x + dx, x + 2dx, etc., defines discrete currents and potential
gradients along x and for the propagation of the depolarization along the neuron.
(Adapted from Fig. 8.2 of Keener and Sneyd, 1998.)
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potential along a membrane; in excitable cells the electrotonic spread leads to regenerative
depolarization which is the basis for excitatory propagation. The basic cable equation, assuming
that extracellular resistance is small, is

, (7-72)

where im is current flow across a 1 cm. length of cable; ri is the longitudinal resistance of a unit
length of cytosol inside the nerve, Ω/cm; Vm is Vm(x,t), the transmembrane voltage, volts, and the
difference between Ve and Vi; rm is the transmembrane resistance, Ω ⋅ cm, which is the
transmembrane resistivity or resistance per unit membrane area, Ω ⋅ cm2, divided by the perimeter
of the fiber, cm; cm is the membrane capacitance of about 1 µF/cm length of cable. This
expression omits consideration of the extracellular resistance re, Ω/cm, and is therefore applicable
for a cable in a large-volume medium where the cross-sectional area is so large that re can be
considered zero. Note that the units differ from those used in describing the action potential,
which were all for a point on a membrane.

The derivation goes as follows, using the setting from Fig. 7-20:

, (7-73)

, (7-74)

where ii and ie are the intracellular and extracellular axial currents. The designation of the currents
as having a negative sign when positive charges flow to a larger x is an accepted convention. The
difference equations become differential equations as ∆x → 0:

, and (7-75)

. (7-76)

When the cross-sectional area of the external solution is large, re → 0, then ie is zero and Vm is the
same as Vi, so Eq. 7-75 can be rewritten as

. (7-77)

The current −im lost across each unit length of membrane, ∆x, reduces the longitudinal flow of
cytosolic or core current at points farther along (higher x), so

. (7-78)
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Differentiating Eq. 7-77 and substituting Eq. 7-78 into the standard equation for transmembrane
current at a point on the membrane, as for the action potential, we obtain the cable equation:

. (7-79)

Analysis of cardiac and neural electrophysiological responses to current step at a point along the
cable illustrated that the potential spread some distance to either side. In the steady state, the
falloff in potential is exponential and the space constant is

cm, (7-80)

and the time constant for the signal to approach the steady state is τm = rmcm. The space constant
is the distance for the peak potential at the site of the current electrode to fall to 1/e, or 0.3678, of
the peak potential. The time constant is the time for the potential to fall to 1/e of its steady-state
value when the current is turned off or, in general, for the change from one steady state to another
to progress to 1 − 1/e or 63% of the way to the new steady state. The cable equation can be
rephrased to use these characteristic time and distance constants:

. (7-81)

Further treatment of this equation is given by Jack, Noble and Tsien (1975). At a point of steady
current stimulation with current I0 the resultant voltage is given by Eq. 7-82, where the 2 in the
denominator is due to the fact that the current flows off in two directions. (If the current stimulus
is near an end of the “cable” the flow is almost unidirectional, so the 2 would become close to
1.0.),

, (7-82)

and the voltage as a function of distance is

. (7-83)

If we define an input resistance Rin then

Rin = V0/I0 .

A further translation into experimentally accessible terms considers these together with nerve
surface area or cross-sectional area:

, (7-84)
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, and (7-85)

, (7-86)

where a is the radius, Rm is the resistance of 1 cm2 of membrane with units Ω/cm2, Ri is the
intracellular longitudinal resistance Ω/cm, and Cm is the capacitance of 1 cm2 of membrane in
F/cm2. Although cardiac Purkinje fibers, strings of cells forming the conduction system of the
heart, do not have the simple forms of cylindrical cable-like neurons, in fact these equations serve
well for the description of passive properties, as demonstrated in Fig. 7-21 from Weidmann
(1952).

For the Purkinje fibres Ri is about 100 Ω/cm, Rm is about 20,000 Ω/cm2, λm is about 2 mm, τm is
about 20 ms, and Cm is about 1 µF/cm2. It may be seen from the figure that the diminution in V0 is
more than the factor of 2.0 expected from the theory; this is presumably due to the finite length of
the preparation, allowing leak of current from the opposite end.

7-7.2. The velocity of propagation
Consider first the propagation along a nerve or muscle fiber with uniform properties along the
length. This would apply to an unmyelinated nerve. The regenerative depolarization due to the
opening of the Na channels drives the continuous propagation along a nerve or Purkinje fibre. The
rate of depolarization, dVm/dt is proportional to the current flow im, so when the conduction
velocity, Θ m/s, becomes constant then the second derivative of voltage with respect to position x

Figure 7-21: Data points show the change in membrane potential when square current
steps were made in a cardiac Purkinje fiber. Voltage change was measured at various
distances along the fiber (ordinate). The abscissa is distance, mm, from the cut end
Current was injected at three points, x = 0.02 mm (cross), x = 1.48 mm (open circle),
and x = 2.14 mm (solid circle). The lines are drawn from the one-dimensional cable
equation, Eq. 7-83. (From Weidmann, 1952, with permission.)
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48 Transport of ions in solution and across membranes
is the second derivative of voltage with respect to time at the same x divided by the conduction
velocity squared:

, (7-87)

which on combining with the cable equation, Eq. 7-79, gives us

 or (7-88)

, (7-89)

since the transmembrane current is Vm/rm. Most commonly this is the Na current, but smooth
muscle cells and partially depolarized cardiac cells will be driven by the relatively slow calcium
inward current, resulting in a slower propagation velocity. In Purkinje fibres Θ is about 3 m/s, due
to a combination of large diameter and high conductivity Na channels, which is very high relative
to cardiomyocyte-to-cardiomyocyte propagation. Smooth muscles, with poorer gap junctional
connections and smaller diameters, may exhibit velocities only 1/1000 of this.

A good generality is that, internal resistances and transmembrane conductances being the
same, the velocity is proportional to the square root of the diameter of the cable:

. (7-90)

The conduction velocity, θ, is speeded up by low internal longitudinal resistance, Ri, low
membrane capacitance, Cm, and high resistance across the membrane, i.e., low transmural
conductance. Hunter, McNaughton and Noble (1975) derived a model function accounting for the
delayed activation due to the m3 for the Na conductance gNa and the rate, k, at which gNa was
activated:

. (7-91)

The delay in activation increases θ, and a high conduction velocity prevents gNa from activating
fully at the wave front and explaining the power of 1/8 on this term. The topic of conduction
velocity is covered in detail by Jack, Noble and Tsien (1975) in their section on nonlinear cable
theory.

A myelinated nerve has a higher conduction velocity, for several reasons. The first is the
insulating and capacitative effect of the myelin sheath. The sheath consists of multiple layers of
lipid bilayer membrane wrapped around the original nerve fiber. This is quite a thick layer, and is
commonly found near the optimal thickness of about 40% of the diameter of the nerve fiber,
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leaving 60% for the cytoplasm. The high membrane resistance lengthens the space constant
(Eq. 7-80), and greatly increases θ. The propagation is maintained by activation of the
regenerative Na current at periodically positioned circumferential bare patches, the Nodes of
Ranvier, where there is no insulation and a plethora of Na channel proteins. The propagation
proceeds therefore by activation of regenerative depolarization at the nodes combined with
passive propagation due to a very long space constant, reaching the next node with high enough
voltage to trigger its Na channels to open. This jumping from node to node is “saltatory
conduction”.

7-8. Maintaining ionic balance: Pumps and exchangers

The major roles of the pumps are to maintain the intracellular concentration of Ca2+ at a low level
and that of intracellular K+ at a high level. The level of intracellular Na is in most cells also kept
low, at about 10% of the extracellular level, for the Na gradient serves as the driving force for the
extrusion of Ca2+ and of H+. This is a complex situation since there are continuous leaks and
periodic time and voltage dependent current fluxes which are to be balanced by these recovery
processes, which must respond to the fluctuating demands placed upon them with varying rates of
excitation, varied ionic gradients, and variable supplies of energy to drive them.

There are three major ATP-driven pumps, the NaK ATPase, the plasmalemmal CaATPase,
and the CaATPase of the sarcoplasmic reticulum (the SERCA pump). The NaK ATPase extrudes
3 Na+ in exchange for 2 K+, and is thus electrogenic, and uses 1 ATP (approximately) for each
stoichiometric exchange. The CaATPases are less well defined, and may use Mg2+, K+ or H+ as
counterions. All of these pumps are reversible in the full sense of the term: at low intracellular
ATP levels they can be run backward by the concentration gradients to produce ATP from ADP
and Pi.

On the cell membrane there is an additional Ca2+ extrusion process, the NaCa exchanger,
NaCaX. It is electrogenic and bi-directional, exchanging three Na+ for one Ca2+, depolarizing the
cell a little when the cell is near the resting potential. In a minimal system, only two of the three
plasmalemmal exchange mechanisms are needed: if the Na-K exchange is handled by the NaK
ATPase, then one might get by with only the NaCaX or the CaATPase. There are species of sheep
without the NaK ATPase on their RBC membranes (Tosteson and Hoffman, 1960); the cells are
equipped with the NaCaX and the CaATPase, but function with much lower [K+]i than other
RBC. This would not work for excitable cells since the resting membrane potential is too near
zero to inactivate the fast inward Na channel, which requires depolarization to below −60 mV.

Defining model equations for the pumps and exchangers requires extensive experimental
data on the mechanisms and kinetics. The pumps have been the subject of ingenious experiments
to uncover the sequence of events involved in ATP binding, the changes in conformational state
and the release of Pi, the translocation of the carried ion and so on. This complex topic will be
covered in Chapter 8 on Transporters.

7-9. Volume changes with ionic fluxes

[Post-Jolly expression for cell water balance (missing section).]
[In this section describe the Post-Jolly approach, show its inadequacy for practical

implementation. Then derive a stronger approach to providing osmotic balance in the
presence of a Donnan, and account for pump fluxes. Provide a model and a program giving
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a true Steady State. This actually is a new research, but is needed for rounding out the ideas
in this book.]

The Endresen and Hall ionic cell (Endresen et al., 2000) illustrates the balancing act.

7-10. Summary

[No material. -ed.]

7-11. Further reading

[To be revised.] The classic works on the research and understanding of electrophysiology and
the nerve action potential are reviewed and evaluated in careful detail in Jack, Noble and Tsien
(1975) and Hille (2001). Less detailed and less demanding texts are those of RB Stein (1980), and
WD Stein (1990), both of which provide excellent perspectives without as much mathematics. For
the mathematically inclined the book by Keener and Sneyd (1998) covers this topic exceedingly
well and presents phase plane analysis of the action potential models.

Recent work in cardiac electrophysiology is presented in journal issues put together from
symposia on the topic, ???

For this section see the website http://www.physiome.org, in particular the
ModelDB/Cardiovascular/Electrophysiology/index.htm page.

7-12. Problems

1. If ER, is −90 mV in a cardiac cell, and if all cation conductances except that for K+ are zero,
and [K+]o is 5 mM, what is the intracellular concentration [K+]i? Use the Nernst equation.

2. Show that RC has the units of time. Use the Terminology to provide conversion factors.
3. List the time- and voltage-dependent variables in the Hodgkin-Huxley nerve action potential

model. Which of these are most important in determining the following: (a) a threshold for
regenerative depolarization; (b) the voltage achieved at the peak of the action potential;
(c) the rapid repolarization phase; (d) a phase of unexcitability following repolarization;
(e) accommodation to a slowly rising stimulus, seen as an increase in the threshold for
regenerative depolarization.

4. Given the Nernst expression for EK and a version of the Goldman equation for the resting
membrane potential that includes Na and K permeabilities, and an augmentation by the
NaKATPase of an additional depolarization by 8 mV, and given that PNa/PK = r, find the
point of intersection between the Goldman and the Nernst relationships as [K+]o is changed
while keeping [K+]i constant at 150 mM. Give values of Em for r = 0.01.

5. The H-H variable m changes with gate opening rate α and closing rate β, such that the
fraction of open m gates is determined through a differential equation dm/dt = α − (α + β)m.
Show that m∞ = α/(α + β), and τ∞ = 1/(α + β).

6. Develop a method to calculate the maximum rate of rise of the action potential for the H-H
model of the squid giant axon. How would you do this experimentally using a circuit?

7. Describe the effects on the space constant of a branch in the cable into two. What are the
effects of enlarging or shrinking cross-sectional areas, while assuming that the densities of
channels per unit surface area remains constant.

8. Estimate conduction velocities for nerves of diameter 20, 50 and 200 µm. Take values for
suitable constants from this chapter.
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9. Show how Eq. 7-83 is a solution to the differential equation of the type

, (7-92)

where ε is a position along the cable.
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