Synaptic circuit organization of mouse motor cortex

Gordon M. G. Shepherd, MD PhD Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL

How do mammals control their actions?

Some numbers

In 1 mm³ of mouse motor cortex:

- ~10⁵ neurons \rightarrow 10¹⁰ *potential* connections
- ~4 km of axon, ~0.4 km of dendrites
- But "only" ~10⁹ actual synapses
- Connections are scarce; presumably also highly selective

Each corticospinal neuron:

- >1 cm total dendritic length, >10⁴ dendritic spines;
- >1 cm intracortical axon, >10³ boutons

Image: Complexity! Image: Complexity!

A further note on complexity

Motor cortex in rodents

Cytoarchitectonics – mouse: Caviness (1975); rat: Palomero-Gallagher and Zilles (2004) Microstimulation mapping – mouse: Li and Waters (1991), Ayling et al. (2009)

Motor cortex brain slice

Questions about M1 circuits

Who talks to whom to form the basic local and longrange input-output circuits?

- How are excitatory neurons interconnected?
- Interneurons and disynaptic inhibition?
- Motor cortex \leftrightarrow thalamus?
- Is there a layer 4 in "agranular" M1?

Excitatory = pyramidal = projection neurons

By targeting identified projection neurons, can assess inputoutput organization of M1 at the cellular level

General strategy for optogenetic circuit mapping in M1

•Cell-type specific photostimulation:

•Express ChR2 in presynaptic cells/axons of interest

- LED/wide-field stimulation
- •Targeted postsynaptic recordings:

•Label projection neurons in vivo with retrograde tracers

•Record in brain slices from multiple identified projection neurons

•To quantify, compare (normalize) responses

Labeling IT and PT neurons

Rabies virus (for optogenetic photostimulation)

(Wilson, Jones, Parent, Deschenes, Reiner, etc.)

2-photon image stacks Red = corticospinal (PT) Green = corticostriatal (IT)

0% double labeling Layer 5B is a mixed layer

Intracortical IT-PT connectivity

•Cross-talk across classes?

Retrograde labeling with rabies

Deletion-mutant rabies virus (RV):

•Glycoprotein gene deleted; no trans-synaptic spread •Ideal for retrograde labeling •Refs: Wickersham, Callaway, Seung •cf. Rathelot, Strick (transsynaptic)

RV-ChR2-Venus for retrograde transfection of projection neurons with channelrhodopsin-2 (ChR2)

Taro Kiritani, collaboration with Ian Wickersham & Sebastian Seung

RV-ChR2 connectivity analysis

- IT neurons talk to PT neurons, but not vice versa
- Confirmed with quadruple recordings
- Similar findings in rat PFC (Morishima Kawaguchi 2006)

Taro Kiritani

Hierarchical circuit organization

•Both IT and PT make intra-class (recurrent) connections

- •Interclass connectivity: unidirectional IT \rightarrow PT
- •PT neurons are downstream
- •Are they simply slaved to IT activity?

H-current (I_h) controls IT \rightarrow PT

- L2/3-driven PT (but not IT) firing increases when I_h is blocked
- Noradrenergic neuromodulation also closes HCN channels

Potential relevance to motor behavior

M1 activity is flexibly related to muscle activity (e.g. BMI)

J Physiol 589.23 (2011) pp 5613-5624

SYMPOSIUM REVIEW

Dissociating motor cortex from the motor

Marc H. Schieber

Departments of Neurology and of Neurobiology & Anatomy, University of Rochester, Rochester, NY, USA

Abstract During closed-loop control of a brain–computer interface, neurons in the primary motor cortex can be intensely active even though the subject may be making no detectable movement or muscle contraction. How can neural activity in the primary motor cortex become dissociated from the movements and muscles of the native limb that it normally controls?

IT/PT molecular differentiation

<u>Neuromodulation</u> Norepinephrine, dopamine, serotonin, acetylcholine

<u>Ion channels</u> HCN, others

<u>Cell fate specification</u> Satb2, Ctip2, others

IT/PT-related studies and data sets

Weiler et al. (2008, Nat Neurosci) – laminar organization of excitatory connections Anderson et al. (2010, Nat Neurosci) – layer 2/3 inputs to IT/PT Sheets et al. (2011, J Neurophysiol) – H-current in PT neurons Kiritani et al. (2012, J Neurosci) – IT → PT connectivity Apicella et al. (2012, J Neurosci) – inhibitory circuits of IT/PT Suter et al. (2013, Cerebral Cortex) – spiking properties of IT/PT Kress et al. (2013, Nature Neurosci) – IT/PT inputs to striatal neurons Yamawaki et al. (2014, eLife) – layer 4 in M1 Joshi et al. (2015, J Neurosci) – IT/PT in auditory cortex Suter et al. (2015, J Neurosci) – Inter-areal connectivity of M1/S2 incl IT/PT Yamawaki et al. (2015, J Neurosci) – CT connectivity with IT/PT/TC in M1

Reviews:

Shepherd (2013, Nature Reviews Neurosci) – broad review of IT/PT Harris and Shepherd (2015 Nature Neurosci) – broad review of cortical circuits