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Goal: Synergistically combine all available information sources to construct accurate response 
surfaces (regression, optimization, inverse problems, uncertainty quantification, and beyond).

Overview

Probabilistic Machine Learning enables:  
• Combining seemingly different information sources (e.g. measurements & simulations) 
• Exploring cross-correlations between variables and identifying interactions 
• Constructing predictive algorithms and perform inference with quantified uncertainty 
• Supervised (regression, classification), unsupervised (clustering, dimensionality reduction), 

reinforcement learning

Multi-fidelity modeling: Utilize cheap low-fidelity models supplemented with a few realizations of 
high-fidelity models. Exploring cross-correlations can lead to orders of magnitude of speed up in 
computation.
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A motivating example: Calibration of blood flow simulations
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Questions:  
1. How can we construct predictive surrogate models that can seamlessly learn from heterogeneous 

information sources? 
2. How can we quantify the uncertainty/error associated with the surrogate model predictions? 
3. How can we optimally acquire new data under a limited budget? 
4. How can we scale the workflow to problems of industrial complexity?
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FIG. 1. Simulation of the human intracranial arterial tree: (a) Brain blood flow simulation in an incomplete CoW of a patient
with hydrocephalus: geometrical model of 23 cranial arteries.6 (b) Brain blood flow simulation in complete CoW: geometrical
model of 65 cranial arteries.6 Colors represent pressure, arrows represent velocity fields, plots depict the flow rate in ml/s
and pressure drop in mm Hg, where the reference pressure is the average pressure at the internal carotid artery (inlet). Top
right: instantaneous streamlines showing complex swirling flow in communicating arteries. Bottom right: MRA image of the
cranial arterial system. Reprinted with permission from Grinberg et al., “Simulation of the human intracranial arterial tree,”
Philos. Trans. R. Soc., A 367, 2371–2386 (2009). Copyright 2009 Royal Society Publishing.

interrupted.6 Such abnormalities are not uncommon, a↵ecting up to 50% of the population accord-
ing to Lippert and Pabst.7 Although generic/consensus geometries8 representing healthy or patho-
logical configurations can be very useful in practice for performing systematic studies and under-
standing the main characteristics of a pathology, for certain cases, such as the cerebral aneurysms
considered in this work, using a patient-specific geometry is of crucial importance. In such cases,
the complex geometry (curvature, tortuosity, etc.) is known to directly a↵ect the flow patterns, the
resulting wall shear stresses and displacements, and, consequently, the onset and evolution of the
pathology. Several studies8–10 have demonstrated this high sensitivity of the flow field on geom-
etry, and in the particular case of cerebral aneurysms, this can lead to developments of inherently
di↵erent nature (e.g., fusiform vs saccular aneurysms10).

Putting it all together, the development of physiologically accurate computational models in
complex geometries requires the coupling of disparate spatial and temporal scales often governed
by diverse mathematical descriptions, e.g., deterministic partial di↵erential equations (PDEs) for
continuum mechanics and stochastic ordinary di↵erential equations for discrete particle dynamics
(see Fig. 2). Consequently, modeling blood flow as a patient-specific multi-scale phenomenon using
coupled continuum-atomistic models is essential to better understand key biophysical and biochem-
ical processes in health and disease (e.g., thrombus formation in aneurysms11 and vaso-occlusion in
sickle cell anemia3).

Multi-scale modeling and simulation of blood flow give rise to several challenges. First, it
requires the derivation of mathematical models which are able to accurately predict physiological
processes. Second, it demands the design of robust interface conditions required to integrate the
continuum and atomistic simulations. Third, it inherently involves the processing of non-stationary
data from atomistic simulations. The fourth challenge is a computational one. In particular, billions
of degrees of freedom are required to accurately resolve the micro-scale and also the interaction
between the blood cells and endothelial cells in a volume as small as 1 mm3. Simulating e↵ects
of small scales on the larger scales requires increased local resolution in the discretization of
computational domain within the continuum description. For example, clot formation starts from
aggregation of individual platelets and the clot must grow to a certain size before a↵ecting the large
scale flow dynamics. However, to accurately capture the clot geometry and its shedding o↵ thrombi,
very high local resolution is required. Moreover, to follow the detached clot segments, an adaptive
local mesh refinement must be used.
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FIG. 5. MaN-MeN coupling: (a) Flow dynamics in the meso-vascular regime are modeled using nonlinear 1D blood flow
models in fractal arterial trees attached to each of the terminal vessels of the parent, patient-specific 3D domain.36 (b) Total
number of arteries in the resulting MaN-MeN topology as a function of the cut-o↵ radius rcut of the fractal trees.36 (c)
Exchanged quantities at the MaN-MeN interface and asynchronous time-stepping communication (�t3D: time step size
of the 3D-FSI solver, �t1D: time step size of the 1D-FSI solver, Qn

3D: flow-rate at the 3D outlet at time step n, Q̃n+1
3D :

extrapolated flow-rate at the 3D outlet, p: total pressure at the 1D inlet at time step n+1, du

dx

: velocity gradient at the 1D
inlet at time step n+1). Reprinted with permission from P. Perdikaris, L. Grinberg, and G. E. Karniadakis, “An e↵ective
fractal-tree closure model for simulating blood flow in large arterial networks,” Ann. Biomed. Eng. 43, 1432–1442 (2014).
Copyright 2014 Springer.

Since 1D dynamics are governed by a hyperbolic system of PDEs, the 1D-FSI solver of each
fractal tree can only admit a single boundary constraint, which is typically the averaged mass
flow computed at the outlet of the parent 3D domain (see Fig. 5(c)). In return, each 1D-FSI
solver provides the pressure, velocity flux, and cross area displacement at the inlet of its fractal
tree, to be inscribed as outflow boundary conditions at the corresponding outlet of the parent
3D domain. The wave propagation nature of the 1D solver typically leads to a more pronounced
Courant-Friedrichs-Lewy stability restriction22 in time-stepping size compared to the one corre-
sponding to the 3D solver. Since this mandates each solver to march in time with a di↵erent time
step, we need to devise an asynchronous communication pattern that synchronizes the solution
between the two solvers accordingly (see Fig. 5(c)). Finally, we note that strong coupling between
the 3D and 1D domains may result either from an implicit monolithic solving approach55 or by
explicitly coupling di↵erent modular solvers by means of sub-iterations.53

2. MaN-MiN

Coupling of atomistic and continuum solvers requires the calculation and communication of
averaged properties, such as fluid velocity and density, across heterogeneous solver interfaces. First,
one needs to perform a proper non-dimensionalization of the corresponding time and length scales
of each solver to ensure consistency in the non-dimensional numbers that characterize the flow
(e.g., the Reynolds number). Then, interface conditions should be derived to respect the require-
ments of each solver. For example, atomistic solvers require a local velocity flux to be imposed at
each cell of the atomistic domain. This is achieved though constructing appropriate interpolation
and projection operators that are capable of mapping the continuum velocity field onto the atomistic
domain (see continuum to atomistic, C2A, operators in Figure 7). Specifically, to enforce mass
conservation, the continuum solver computes the fluxes through the surface interfaces with the DPD
domains, and particles as inserted in the DPD domain in such a way that these fluxes are preserved,
and the velocity vector of the DPD particles corresponds to the velocity sampled in the continuum
solver.

Similarly, the continuum solver requires the geometrical representation of moving boundaries
and flow “obstacles” arising due to aggregation of atomistic particles (e.g., thrombus formation)11
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Gaussian processesInfinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:
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Starting point: The multivariate Gaussian distribution
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Infinite model, but finite observations: The marginalization property
Samples from a GP prior 

Priors over functions:
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Construction of response surfaces

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x

0, or as a function of r = |x � x

0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 

Generalization: The Gaussian process

Infinite model... but we always work with finite sets!

In the GP context f = f(x):
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mean function covariance function

Rasmussen, C. E. Gaussian processes for machine learning 2006. 

Posterior is also Gaussian!

p(fA, fB) ⇠ N (µ,K). Then:

p(fA|fB) = N (µA +KABK
�1
BB(fB � µB),KAA �KABK

�1
BBKBA)

In the GP context this can be used for inter/extrapolation:

p(f⇤|f1, · · · , fN ) = p(f(x⇤)|f(x1), · · · , f(xN )) ⇠ N
p(f⇤|f1, · · · , fN) = p(f(x⇤)|f(x1), · · · , f(xN ))

⇠ N (K

>
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p(f(x⇤)|f(x1), · · · , f(xN )) is a posterior process!

Posterior is also Gaussian:
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Gaussian process regression

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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are written either as a function of x and x
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0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.
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is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
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in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Multi-fidelity stochastic modeling — Paris Perdikaris 5

Rasmussen, C. E. Gaussian processes for machine learning 2006. 



The choice of the covariance kernel has a big impact on the model as it is tightly related to:

� The smoothness of the sample paths, hence the regularity of the predictor.

� The accuracy and uncertainty of the predictor.

� The conditioning of the correlation matrix, hence the e�ciency of the learning algorithms.

⌃(x,x0; ✓) = �2e�✓|x�x

0|2 ⌃(x,x0; ✓) = �2e�✓|x�x

0|

Introduction GP regression

This is because changing the kernel implies changing the prior
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Importance of the prior

468th APS-DFD Meeting — Calibration of Blood Flow Simulations

Construction of response surfaces

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x

0, or as a function of r = |x � x

0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form
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is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 

468th APS-DFD Meeting — Calibration of Blood Flow Simulations

Construction of response surfaces

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x

0, or as a function of r = |x � x

0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
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some positive definite matrix W0, giving rise to a prior on f(x) with covariance
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Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.
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in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 
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Training & prediction

Prediction:

the second kind, respectively. In what follows, we formulate the inference problem for the
case of homoscedastic noise, while we refer the reader to [] for a detailed outline of the
heteroscedastic case. To this end, we introduce ✓ = [�2

, ⌫,,�

2
✏

]T as a vector of hyper-
parameters which characterize the GP model, which are typically computed from the data
through maximum likelihood estimation.

If we consider a Gaussian likelihood p(y|f) = N (y|f ,�2
✏

I) then the posterior distri-
bution p(f |y,X) is tractable and can be used to perform predictive inference for a new
output f⇤, given a new input x⇤ as

p(f⇤|y,X,x⇤) = N (f⇤|µ⇤,�
2
⇤), (5)

µ⇤(x⇤) = k⇤N (K + �
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where k⇤N = [k(x⇤,x1), . . . , k(x⇤,x
N

)], k
N⇤ = k

T

⇤N , and k⇤⇤ = k(x⇤,x⇤). Predictions are
computed using the posterior mean µ⇤, while prediction uncertainty is quantified through
the posterior variance �

2
⇤.

The vector of hyper-parameters ✓ is determined by maximizing the marginal log-
likelihood of the observed data (the so called model evidence), i.e.,

log p(y|X,✓) = �1

2
log |K + �

2
✏

I|� 1

2
y

T (K + �

2
✏

I)�1
y � N

2
log 2⇡ (8)

2.3 Introducing risk-averseness

If a point forecast of f is needed, then performing predictions using the posterior mean µ⇤
(see Eq. 6) would be the traditional choice. Carrying this into the an optimization context,
one might be led to consider the following substitute of Eq. 1:

min
x2X

µ⇤(x). (9)

If x⇤ and v

⇤ are the optimal solution and the optimal value of this problem, then what
can be said about f(x⇤)? In this Bayesian setting, we believe that the expected value of
f(x⇤) is equal to µ⇤(x⇤)  µ⇤(x) for all x 2 X , with the right-hand side being equal to
the expected value of f(x). Consequently, based on the information incorporated in the
posterior p(f |y,X), we have that

on “average” f(x⇤) = R
↵

((Y (x⇤; ⇠)) = v

⇤  R
↵

((Y (x; ⇠)) for all x 2 X .

In other words, we have obtained an x

⇤ that is “good” on average relative to all other x.
However, we are unable to provide any guarantee about how “bad” x

⇤ can be. Keep in
mind that we don’t know f(x⇤) and that we are concerned about this quantity being high.
For example, think about the simplified situation with only to candidate designs, say x and
x

0. Suppose we have that µ⇤(x) < µ⇤(x0). Then, the above optimization will select x as
“best.” However, we have no control of how high f(x) can be. From a decision theoretical
point of view, we are risk-neutral with regard to the choice of x.

But, this is an inconsistency as we are making a risk-averse assessment with respect to
the randomness due to ⇠ through the use of the risk measure R

↵

. It seems then inappro-
priate to be insistent on risk-neutrality regarding our “modeling uncertainty” about f , but
insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.

This discussion motivates us to generalize Eq. 9 into

3
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can be said about f(x⇤)? In this Bayesian setting, we believe that the expected value of
f(x⇤) is equal to µ⇤(x⇤)  µ⇤(x) for all x 2 X , with the right-hand side being equal to
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⇤ that is “good” on average relative to all other x.
However, we are unable to provide any guarantee about how “bad” x

⇤ can be. Keep in
mind that we don’t know f(x⇤) and that we are concerned about this quantity being high.
For example, think about the simplified situation with only to candidate designs, say x and
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0. Suppose we have that µ⇤(x) < µ⇤(x0). Then, the above optimization will select x as
“best.” However, we have no control of how high f(x) can be. From a decision theoretical
point of view, we are risk-neutral with regard to the choice of x.

But, this is an inconsistency as we are making a risk-averse assessment with respect to
the randomness due to ⇠ through the use of the risk measure R
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. It seems then inappro-
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Assign priors over the hyper parameters and marginalize them out using MCMC.
Bayesian approach

fequentist approach
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But, this is an inconsistency as we are making a risk-averse assessment with respect to
the randomness due to ⇠ through the use of the risk measure R

↵

. It seems then inappro-
priate to be insistent on risk-neutrality regarding our “modeling uncertainty” about f , but
insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.

This discussion motivates us to generalize Eq. 9 into

3

Predictive posterior

Block covariance matrix
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ft(x) = ⇢t�1(x)ft�1(x) + �t(x) f̃t�1 ⇠ ft�1|D1,D2, . . . ,Dt�1

Key idea: Replace ft�1 with the GP posterior of the previous level f̃t�1

This allows for a static condensation procedure on the fully coupled covariance matrix yielding a 
decoupled problem, i.e.     independent GP regression problems.s

Cost:

Fully coupled* Recursive**

1⇥
 

sX

i=1

Ni ⇥
sX

i=1

Ni

!
s⇥ (Nt ⇥Nt)

* 

** Ph.D. Thesis defense, ��/��/���� — Data-driven parallel scienti�c computing

Stochastic auto-regressive models
We have s levels of information sources producing outputs yt(xt), at locations xt 2 Dt ✓ Rd, sorted
by increasing order of �delity and modeled by Gaussian processes Zt(x), t = 1, . . . , s.

Zt(x) = ⇢t�1(x)Zt�1(x) + �t(x), t = 2, ..., s,

where �t(x) is a Gaussian �eld independent of {Zt�1, . . . , Z1} and distributed as �t ⇠ N (µ�t ,�
2
tRt).

Also, ⇢(x) is a scaling factor that quanti�es the correlation between {Zt(x), Zt�1(x)}.
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Figure 6: Exact response surface S = E[Y (x; ⇠)] and co-kriging predictor constructed using four
levels of fidelity: 80 S11 points (f

c

(x; ⇠), SG-L2), 40 S12 points (f
c

(x; ⇠), SG-L5), 10 S21 points
(f

e

(x; ⇠), SG-L2), and 5 S22 points (f
e

(x; ⇠), SG-L5). The inset plot shows the point-wise variance
of the co-kriging predictor.

The random inflow has a parametric expression of the from

U1 (�1,�2; ⇠1, ⇠2) = 1 + �1 sin
⇣⇡y

9

⌘
+ �2

h
⇠1 sin

⇣⇡y
9

⌘
+ ⇠2 cos

⇣⇡y
9

⌘i
. (3.8)

where (�1,�2) are parameters controlling the amplitude of the skewness of the inflow noise
(design variables), y is the coordinate transverse to the flow, and (⇠1, ⇠2) are random variables
with standard normal distributions.

Our goal here is to construct the response surface for the 0.6-superquantile risk of the base
pressure coefficient R0.6(C

BP

) (see Fig. 7) at Reynolds number Re= U1D

⌫

= 100.
The proposed multi-fidelity modeling framework is illustrated here considering a single model

in physical space and three models in probability space. The physical model returns realizations of
the flow field solution produced by direct numerical simulations of Eq. 3.7 using the spectral/hp
element method. All simulations are started from a zero-velocity initial condition, and are
integrated until a stable limit-cycle state is reached. This state is characterized by the well known
von-Karman vortex shedding pattern in which the unsteady separation of the flow around the

Cokriging Variance
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Recursive formulation

ŷt(x
?
t ) = µ̂t + ⇢̂t�1ŷt�1(x

?
t ) + rTt (Rt + �̂2

✏tI)
�1[yt(xt)� 1µ̂t � ⇢̂t�1ŷt�1(xt)],

s2t (x
?
t ) = ⇢̂2t�1s

2
t�1(x

?
t ) + �̂2

t


1� rTt (Rt + �̂2

✏tI)
�1rt +

[1� rTt (Rt + �̂2
✏tI)

�1rt]2

1

T
t (Rt + �̂2

✏tI)
�1

1t

�
,

Once Zt(x) has been trained onNt observations we can perform predictions at new points x?
t and

quantify the variance as

whereRt = t(xt,x0
t; ✓̂t) is theNt ⇥Nt correlation matrix of Zt(x), rt = t(xt,x?

t ; ✓̂t) is a 1⇥Nt

correlation vector between the prediction and theNt training points, and 1t is a 1⇥Nt vector of ones.

Learning: Given yt �nd the optimal {µ̂t, �̂2
t , �̂

2
Et
, ✓̂t, ⇢̂t�1}

This essentially decouples the s-level co-kriging to s independent kriging problems!

Co-kriging: inversion of correlation matrices of size
Ps

t=1 Nt ⇥
Ps

t=1 Nt

Recursive co-kriging: s inversions of correlation matrices of sizeNt ⇥Nt, t = 1, . . . , s

Also xt 2 Dt ✓ Rd and the design sets have a nested structure, i.e.D1 ✓ D2 ✓ · · · ✓ Dt�1.
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Theorem (LeGratiet, 2014): 
The predictive posterior of 
the recursive scheme has exactly the 
same distribution with the the fully 
coupled model given a nested 
experimental design.

Multi-fidelity modeling via recursive GPs
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Using deep hierarchies 

Goal: Develop multi-fidelity algorithms for learning general nonlinear correlations, 
hence extending the linear AR(1) scheme of Kennedy & O’Hagan. 

EQUiPS - HR0011517798: Scalable Framework for Hierarchical
Design under Uncertainty with Application to Marine Vehicles

PI: George Em Karniadakis

Quarter 2 Report

1 Task 1: Deep Networks – Greedy recursive training

of deep networks for multi-fidelity modeling (Brown/MIT)

1.1 Motivation

Here we are building upon the multi-fidelity framework introduced in our Q1 report. Our
motivation remains the same, namely constructing scalable information fusion schemes for
blending variable fidelity information towards constructing accurate response surfaces for
optimization, uncertainty quantification, inverse problems, etc. However, here we signifi-
cantly extend our formulation to exploit general non-linear correlations between available
data sources. Take for example the pedagogical demonstration depicted in Figs. 1, 2 where
we aim to learn nonlinearities in the correlation space of di↵erent signals, and notice how the
new approach is able to precisely recover the non-trivial cross-correlation structure from a
limited amount of data. This development overcomes any limitations introduced by employ-
ing linear auto-regressive relations, and is expected to outperform the current state-of-the-art
on the multi-fidelity data-sets we currently produce for the design optimization of the HY2-
SWATH vessel.

1.2 Methods

Hereby we present how one can generalize the classical linear AR1 autoregressive scheme of
Kennedy and O’Hagan [3] to a nonlinear auto-regressive architecture using deep Gaussian
processes. We are particularly focused on maintaining the e�cient greedy and layer-wise
training structure of the recursive multi-fidelity algorithms we developed during the first
quarter. To this end recall the linear AR1 autoregressive scheme

ft(x) = ⇢ft�1(x) + �t(x) (1)

where ft(x), and ft�1(x) are Gaussian process priors on the model response at fidelity levels
t and (t� 1), t = 1, . . . , s, ⇢ is a linear scaling factor that quantifies the correlation between
the model outputs {yt,yt�1}, and �(xt) is a Gaussian process distributed with mean µ�t and
covariance kernel Kt = t(xt,x

0
t).

The proposed generalization recasts the auto-regressive multi-fidelity scheme of Eq. 1 to

ft(x) = gt�1(ft�1(x)) + �t(x), (2)
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classical AR(1)
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motivation remains the same, namely constructing scalable information fusion schemes for
blending variable fidelity information towards constructing accurate response surfaces for
optimization, uncertainty quantification, inverse problems, etc. However, here we signifi-
cantly extend our formulation to exploit general non-linear correlations between available
data sources. Take for example the pedagogical demonstration depicted in Figs. 1, 2 where
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limited amount of data. This development overcomes any limitations introduced by employ-
ing linear auto-regressive relations, and is expected to outperform the current state-of-the-art
on the multi-fidelity data-sets we currently produce for the design optimization of the HY2-
SWATH vessel.

1.2 Methods

Hereby we present how one can generalize the classical linear AR1 autoregressive scheme of
Kennedy and O’Hagan [3] to a nonlinear auto-regressive architecture using deep Gaussian
processes. We are particularly focused on maintaining the e�cient greedy and layer-wise
training structure of the recursive multi-fidelity algorithms we developed during the first
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non-linear autoregression 
via deep GP priors

Technical approach:  

• Obtain a recursive inference scheme by conditioning on the GP posterior of the previous fidelity level 

• Propagate uncertainty across fidelity levels using a variational re-formulation of Gaussian process 
regression that enables supervised learning with uncertain inputs 

• The resulting predictive scheme generalizes the linear AR(1) model without increasing the 
computational complexity
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Figure 1: Capturing non-linear multi-fidelity cross-correlations using deep networks: (a)
Predicted mean and two standard deviation band for non-linear multi-fidelity Gaussian pro-
cesses. The multi-fidelity predictor is able to capture the exact solution using only 5 high-
fidelity observations supplemented with more low-fidelity data. Notice how around x=0.4,
0.85 the multi-fidelity predictor captures the right trend in the exact solution, despite the
fact that the low-fidelity data is suggesting the opposite. (b) Predicted mean and two stan-
dard deviation band for the linear AR1 multi-fidelity scheme. The multi-fidelity predictor
fails to capture the exact solution using only 5 high-fidelity observations supplemented with
more low-fidelity data. (c) Correlation structure between the exact solution and the low-
and high-fidelity data. Notice the non-linear multi-fidelity predictor can accurately capture
the quadratic non-linearity in the relation.

4

1.3 Results

We demonstrate the e↵ectiveness of the proposed methods through two pedagogical exam-
ples. First consider two periodic signals

fLF = sin(4⇡x) (3)

fHF = f

2
LF , (4)

where the high-fidelity model exhibits a non-linear (quadratic) cross-correlation with the
low-fidelity model. Our aim is to reconstruct the high-fidelity signal using a few high-
fidelity observations supplemented by a number of low-fidelity data. Using only 5 high-
fidelity observations and the recursive implementation of of Eq. 2 we are able to build a very
accurate reconstruction of fHF , in contrast with the linear AR1 schemes that fails to learn
a meaningful representation (see Fig. 1). Remarkably, the new multi-fidelity predictor is
able to follow the correct trend in the high-fidelity model even in regions where we have no
high-fidelity data, and the low-fidelity model is suggested an opposite trend.

Next, we consider a slightly more general example where the high-fidelity model is ob-
tained through a nested composition of a low-fidelity logistic map

fLF =
1

1 + e

�x
(5)

fHF = sin(fLF (fLF (x))10⇡) (6)

Figure 2 summarizes the results for this case and highlights the superiority of the proposed
multi-fidelity approach versus the linear auto-regressive scheme.

3

1D Example:

• The deep multi-fidelity predictor is 
able to capture the exact solution 
and recover the quadratic correlation 
structure using only 5 high-fidelity 
observations 

• Notice how around x=0.4, 0.85 it 
captures the right trend in the exact 
solution, despite the fact that the 
low-fidelity data is suggesting the 
opposite. 

• The AR(1) scheme fails to capture the 
exact solution and recover the 
quadratic correlation structure using 
the same training set

Multi-fidelity modeling using deep networks
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Objective
Technical Approach

Results
Conclusion

Technical Approach

A simple way to explain the main idea of this work is to
consider the following structure:


f

1

(h)
f

2

(h)

�
⇠ GP

✓
0
0

�
,


k

1

(h, h0) ⇢k

1

(h, h0)
⇢k

1

(h, h0) ⇢

2

k

1

(h, h0) + k

2

(h, h0)

�◆
,

where

x 7�! h := h(x) 7�!

f

1

(h(x))
f

2

(h(x))

�
.

The high fidelity code is modeled by f

2

(h(x)) and the low
fidelity one by f

1

(h(x)).
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Multi-fidelity in physical models and in probability space
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Figure 2: Multi-fidelity in models and in probability space: m models of variable fidelity in physical
space are driven by random input, producing a random response surface Y

m

(x; ⇠). For example,
the expectation of a derived quantify of interest E[f(Y

m

(x; ⇠))] can be estimated by employing p

methods of variable fidelity in probability space.

To underline the potential benefits of this approach, we note that the matrix ⌃
t

in the
Kennedy and O’Hagan model (see Eq. 2.7) has size

P
s

t=1 nt

⇥P
s

t=1 nt

, where n
t

is the number
of observations at the tth fidelity level. On the other hand, the recursive co-kriging approach
involves the inversion of s covariance matrices (⌃

t

)

s

t=1 (see Eq. 2.8) of size n
t

⇥ n
t

, where n
t

is
the number of observations y

t

(x) at level t [11]. Moreover, we note that at each recursive level,
the number of unknown parameters to be learned from the data reduces to {µ

t

, ⇢
t�1, ✓t,�t},

compared to the large parametric set of {µ
t

, ⇢
t�1, ..., ⇢1, ✓t, ..., ✓1,�t, ...,�1} of the coupled

Kennedy and O’Hagan scheme.

(b) Multi-fidelity in models and in probability space
We can build further upon the presented co-kriging framework to formulate a general
methodology that can simultaneously address multi-fidelity in physical models as well as multi-
fidelity in probability space. As it is often the case in realistic design scenarios, the output of a
system may well be sensitive to a set of inputs ⇠ that exhibit random variability. Consequently,
decision making towards identifying an optimal design is typically informed by exploring the
measures of uncertainty that describe the response of the underlying stochastic dynamical system.
This response is often characterized by non-Gaussian statistics that can be estimated numerically
by utilizing appropriate sampling and integration techniques. The potential non-Gaussianity
in the system response should not be confused with the Gaussian nature of the kriging/co-
kriging predictors. The former is an inherent property of the dynamical system that generates
the observed data, while the later introduces a modeling framework for information fusion.

Similarly to having multi-fidelity in models, methods of different fidelity can also be
incorporated in probability space to provide an accurate quantification of uncertainty introduced
by random input. This structure is schematically illustrated in Fig. 2, where m models of variable
fidelity in physical space are driven by random input, hence producing a random response surface
Y

m

(x; ⇠). In return, any uncertainty quantification measure of Y

m

(x; ⇠), such as for e.g. the
expectation E[Y

m

(x; ⇠)] or the risk R[Y

m

(x; ⇠)], can be estimated using a set of p variable-fidelity
methods, such as Monte Carlo integration [16] or probabilistic multi-element collocation on tensor
product grids [17] (see Fig. 2).

This construction results in a family of response surfaces that can be organized hierarchically
in a p⇥m matrix, where physical model fidelity is increased along the columns and
probability space model fidelity increases along the rows (see Fig. 3). Then, it is meaningful
to allow information fusion along the {!}, {#}, {"!}, {#!} directions by employing the
autoregressive co-kriging framework presented in Sec. 2(a).ii. For example, moving along the
purely vertical direction {#} results to the following autoregressive expression for the expectation
E[f(Y

m

(x; ⇠))]:
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We propose a new framework for design under
uncertainty based on stochastic computer simulations
and multi-level recursive co-kriging. The proposed
methodology simultaneously takes into account
multi-fidelity in models, such as direct numerical
simulations versus empirical formulas, as well as
multi-fidelity in the probability space (e.g., sparse
grids vs. tensor product multi-element probabilistic
collocation). We are able to construct response
surfaces of complex dynamical systems by blending
multiple information sources via auto-regressive
stochastic modeling. A computationally efficient
machine learning framework is developed based on
multi-level recursive co-kriging with sparse precision
matrices of Gaussian Markov random fields. The
effectiveness of the new algorithms is demonstrated in
numerical examples involving a prototype problem in
risk-averse design, regression of random functions, as
well as uncertainty quantification in fluid mechanics
involving the evolution of a Burgers equation from
a random initial state, and random laminar wakes
behind circular cylinders.

1. Introduction
Progress in perceptibly diverse areas of science such
as numerical analysis and scientific computing, design
optimization, uncertainty quantification, and statistical
learning, have started to carve an emerging trend in
engineering design, in which decision making becomes
increasingly more data-driven rather than merely relying
on empirical formulae and expert opinion. A set of
versatile tools, ranging from experiments to stochastic

c� The Author(s) Published by the Royal Society. All rights reserved.
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Figure 3: Family of response surfaces resulting from simultaneously addressing multi-fidelity
in models and in probability space. Physical model fidelity is increased along the columns (red
arrow) and probability space model fidelity increases along the rows (blue arrow). The yellow
arrow represents a possible optimal information fusion path in the combined fidelity space.

E
k+1[f(Yl

(x; ⇠))] = ⇢
k+1Ek

[f(Y
l

(x; ⇠))] + �
k+1(x), k p, lm, (2.9)

where the k-index increases with the fidelity of the estimator of E[f(Y(x; ⇠))] in probability space,
while the l-index increases with model fidelity in physical space.

This structure gives rise to the very interesting task of identifying an optimal path traversal
between different models for building an accurate representation of the target response surface.
This is an open question that we plan to address in a future study. A possible way of attacking
this problem is through stochastic dynamic programming techniques for guiding an optimal
allocation of available computational resources [18]. Alternatively, one could employ random
graph theory to identify optimal information/entropy diffusion paths, where each graph node
is weighted by the fidelity and corresponding cost of each model, while edge weights represent
the degree of correlation between different models.

(c) Gaussian Markov random fields and the SPDE approach
Kriging and co-kriging methods provide predictive schemes that are constructed by exploring
spatial correlations between variables. A key part of this process is fitting a parametric covariance
model to the observed data using machine learning and optimization techniques. The main cost
of this procedure is the factorization of dense and often ill-conditioned covariance matrices for
estimating the likelihood functions that guide the machine learning algorithm. Here, we provide
a brief overview of a method that can effectively reduce the cost of inferring covariance models
from input data, leading to efficient kriging and co-kriging predictive schemes.

A popular choice of a kernel characterizing the covariance of a random field u(x) stems from
the Matérn family [2,4],

C(x,x0
) =

2

1�⌫�2

(4⇡)
d
2 � (⌫ +

d

2 )
2⌫

(||x� x

0||)⌫K
⌫

(||x� x

0||), x2Rd, (2.10)

where ⌫ determines the mean-square differentiability of u(x),  is a scaling parameter related to
the correlation length of u(x), denoted by ⇢, and defined as ⇢=

p
8⌫/. Also, �2 is the marginal

variance of the process, while � (·) and K
⌫

(·) are the Euler gamma and modified Bessel function
of the second kind, respectively. We note that for ⌫ = 0.5, the Matérn covariance simply reduces
to the exponential covariance kernel, while when ⌫ !1 we recover the Gaussian kernel [2,4].

A powerful result by Whittle [19] shows that a random field u(x) with a Matérn covariance is
a solution to the fractional stochastic partial differential equation (SPDE)

(2 �r2
)

↵
2 u(x) = ⌧2W(x), x2Rd, ↵= ⌫ + d/2, > 0, ⌫ > 0, (2.11)

where W(x) is Gaussian white noise, and ⌧ is a scaling parameter. Admissible solutions to Eq. 2.11
are referred to as Matérn fields and are proved to be the only stationary solutions to this SPDE [19].
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Extensions to vector-valued outputs

2. Methodology

Consider a scalar random field u(x, ⇠) depending on a set of coordinates (or design
variables) x 2 Rn, as well as on a set of random parameters ⇠ 2 Rd. The field u could
be, e.g., the solution to a partial di↵erential equation in which the boundary conditions
are set to be random and represented in terms of ⇠. Suppose that u(x, ⇠) is in a separable
Hilbert space. This allows us to write the series expansion

u(x, ⇠) �
kX

i=1

ai(⇠)Li(x), (1)

where Li(x) are basis functions depending on the coordinates (or design variables) x
while ai(⇠) are functions of random variables ⇠. If u(x, ⇠) is the solution to a stochastic
PDE model, then Li(x) are usually set a priori (spatial basis functions), while the func-
tions ai(⇠) are determined by the PDE, e.g., by computing its solution at specific values
of ⇠ through the probabilistic collocation method [1, 7, 4]. At this point we pose the
following question: can we determine a model for the random vector field

a(⇠) = [a1(⇠) · · · ak(⇠)] (2)

based on data collected at a specific nodes in the ⇠-space? This question is obviously
not new and researchers have been working on it for decades. For instance, one can
use polynomial interpolation of each ai(⇠) at Chebyshev sparse grids [2]. However, this
implicitly assumes that ai(⇠) is a multivariate polynomial (which we do not know for
sure), and also that we can predict the value of ai(⇠) at a non-observed location with
probability 1, i.e., with no uncertainty. This is obviously not correct from a statistical
standpoint. In a more robust setting, ai(⇠) should be considered as a random field with
known values at observed points. Following the classical literature [15, 16, 5, 23, 9],
we shall assume that the distribution of the vector a(⇠), conditional to the realization
{a1 = a(⇠1), ..., an = a(⇠n)} is Gaussian with mean m(⇠) and (matrix-valued) covariance
function C(⇠1, ⇠2), i.e.,

a(⇠)|a1, ..., an ⇠ GP (m(⇠),C(⇠1, ⇠2)) . (3)

As we shall see in the subsequent sections, this setting allows us to build a multi-fidelity
Gaussian process regression framework, in which observations of a(⇠) obtained from
models with di↵erent levels of fidelity are combined in a seamless way to yield a highly
accurate Gaussian predictor of a(⇠).

2.1. Calculation of Statistical Moments: Measuring the Uncertainty of Uncertainty
In the traditional uncertainty quantification setting, ai(⇠) are considered as deter-

ministic functions of the random variables ⇠, e.g., multivariate orthogonal polynomials

3
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3.2.1. Separable Covariance Function
Suppose that covariance model C j(⇠, ⇠0) is separable, in the sense that

C j(⇠, ⇠0; ✓ j) = r j(⇠, ⇠0; ✓ j)⌃ j, (32)

where r j is a correlation function and ⌃ j is a matrix with fixed entries. The assumption
(32) implies that the is only one spatial correlation function representing the cross co-
variance between all components of the model a( j)(⇠). The separable covariance has a
conjugate prior for ⌃ j, which allows us to integrate out ⌃ j analytically from the posterior
(25). This yields a multivariate Student-t conditional posterior with mean and variance
that can be computed analytically.

3.2.2. Non-separable Covariance Function
Unlike the separable case, a non separable covariance function can have a di↵erent

spatial correlation function for each component of the model output. In particular, we
consider here the linear model of coregionalization (LMC), where

C j(⇠, ⇠0; ✓ j) = B
⇥
diag

�
r1(⇠, ⇠0; ✓1), ..., rk(⇠, ⇠0; ✓k)

�⇤
BT . (33)

As is well known [18], depending on the matrix B we can have di↵erent models of
coregionalization. For example, if the choose B to be diagonal (with positive entries),
then the LMC is called independent; on the other hand, if we assume that B is symmetric
and positive definite then the LMC is called dependent. In the latter case we can use the
spectral decomposition of BBT to represent B e�ciently. In both cases, the coe�cients
of the matrix B become additional parameters that have to be estimated when performing
GPR at each level of fidelity.

4. Numerical Results

In this Section we provide numerical results and study the accuracy of the multi-
fidelity GPR approach we presented in this paper. To this end, we first study a simple
pedagogical example, i.e., a real function in [0, 2⇡] depending on one random parameter
⇠. This allows us to validate our methods and assess their accuracy and computational
e�ciency. Subsequently, we apply our multi-fidelity GPR approach to the stochastic
Burgers equation in 1D and to a stochastic thermal convection problem in 2D.

4.1. A Pedagogical Example
Consider a real function u(x, ⇠), periodic in x 2 [0, 2⇡], and depending on one ran-

dom parameter ⇠, which we assume to be uniformly distributed in [�1, 1]. Such function
can be approximated by the Fourier series

u(x, ⇠) =
kX

i=1

ai(⇠)Li(x), (34)
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Figure 4: Multivariate recursive co-kriging with non separable covariance. Shown are results for the co-
e�cient a1(⇠) obtained with NH = 5 high-fidelity samples and a di↵erent number of low-fidelity samples.
It is seen that as we increase NL the co-kriging predictor becomes more and more accurate (the standard
deviation of the high-fidelity predictor decreases).

multivariate GPR with non-separable covariances. The main bottleneck of the multi-
variate GPR is the optimization of the likelihood function, which depends on the model
parameters of all functions ai(⇠). On the other hand, multivariate GPR with separable
covariance function can be very e�cient in situations where there is a strong statistical
correlation between di↵erent ai(⇠), i.e., when all modes ai(⇠) can be modeled by a single
correlation function at each fidelity level.

4.2. Stochastic Burgers equation
Consider the following initial/boundary value problem for the Burgers equation

8>>>>>>>><
>>>>>>>>:

@u
@t
+ u
@u
@x
=

1
2
@2u
@x2 + f (x, t) x 2 [0, 2⇡] t � 0

Periodic B.C.

u(x, 0, ⇠) = u0(x; ⇠)

(40)

where u0(x, ⇠) is a random initial condition depending on two uniformly distributed ran-
dom variables (⇠1, ⇠2) (uniform in [�

p
3,
p

3])

u0(x, ⇠) = 1 + ⇠1(!) sin(x) + ⇠2(!) cos(x) (41)

and f (x, t) is a the deterministic forcing term defined as

f (x, t) = 8 sin(10x) sin(5t) + 8 cos(7x)e� sin(t). (42)
13
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We would like to use multi-fidelity GPR to infer the statistics of the random field u(x, t; ⇠)
at time t = 1. To this end, we represent u in terms of the Fourier series

u(x, t, ⇠1, ⇠2) =
N/2X

q=�N/2

aq(t, ⇠1, ⇠2)eiqx (43)
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correlation function at each fidelity level.

4.2. Stochastic Burgers equation
Consider the following initial/boundary value problem for the Burgers equation

8>>>>>>>><
>>>>>>>>:

@u
@t
+ u
@u
@x
=

1
2
@2u
@x2 + f (x, t) x 2 [0, 2⇡] t � 0

Periodic B.C.

u(x, 0, ⇠) = u0(x; ⇠)

(40)

where u0(x, ⇠) is a random initial condition depending on two uniformly distributed ran-
dom variables (⇠1, ⇠2) (uniform in [�

p
3,
p

3])

u0(x, ⇠) = 1 + ⇠1(!) sin(x) + ⇠2(!) cos(x) (41)

and f (x, t) is a the deterministic forcing term defined as

f (x, t) = 8 sin(10x) sin(5t) + 8 cos(7x)e� sin(t). (42)
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Example: Stochastic Burgers equation
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Figure 7: Stochastic Burgers equation: Univariate recursive co-kriging. Predictor mean and standard de-
viation of the coe�cient a35 at time t = 1. To determine the recursive co-kriging model, we computed 11
high-fidelity, 29 medium-fidelity and 64 low-fidelity solution samples of (40)-(42). The sample locations
in the (⇠1, ⇠2)-space are shown in Figure 6.
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predictor standard deviation and the absolute error of the predictor mean relative to the exact solution to
(40)-(42) at t = 1 and for two di↵erent sections: x = 0 (first row), x = ⇡ (second row). To determine the
recursive co-kriging model, we computed 11 high-fidelity, 29 medium-fidelity and 64 low-fidelity solution
samples of (40)-(42). The sample locations in the (⇠1, ⇠2)-space are shown in Figure 6.
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Inferred solution field at t=1

Multi-fidelity:
N=15, low-fidelity, 64 train. points
N=20, medium-fidelity, 29 train.points
N=60, high-fidelity, 11 train.points
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Example application: Solution of linear differential equations
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Raissi, M., P. Perdikaris, and G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, http://128.84.21.199/abs/1607.04805, 2016

http://128.84.21.199/abs/1607.04805


Example application: Adaptive refinement via active learning
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Raissi, M., P. Perdikaris, and G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, http://128.84.21.199/abs/1607.04805, 2016

http://128.84.21.199/abs/1607.04805


Bayesian Optimization

Global Optimization 

GPs allow us to take the limit to infinity

Intuitive solution
Infinite curves

Global Optimization 

Let’s build some intuition about Bayesian Optimization

Intuitive solution
Many curves

Global Optimization 

Exploration vs Exploitation: Lower confidence bound

GP Upper (lower) Confidence Band
[Srinivas et al., 2010]

Direct balance between exploration and exploitation:

↵LCB(x; ✓,D) = �µ(x; ✓,D) + �(x; ✓,D)
Global Optimization 

Exploration vs Exploitation: Expected Impovement

Expected Improvement
[Jones et al., 1998]

↵EI (x; ✓,D) =

Z

y
max(0, ybest � y)p(y |x; ✓,D)dy

BO provides a strategy to transform:

x

? = min
x2Rd

||f(x)� y?|| (potentially intractable)

into a series of problems:

xn+1 = arg max

x2Rd
↵(x;Dn,Mn)

where: 
• The so called acquisition function  

is inexpensive to evaluate 
• Acquisition function gradients are 

typically available 
• Still a non-convex optimization but 

efficient solvers are available  
(DIRECT, CMA, gradient descent)

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and exploitation.

Jones, D. R. A taxonomy of global optimization methods based on response surfaces. Journal of global optimization 21:345–383, 2001. 
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Example application: Probability of failure in linear elasticity
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Bayesian Optimization: Static cantilever beam Demo

Matlab code

L
x

u(x) :=
d

4

dx

4
u(x) = f(x),

u(0) = u

0(0) = 0

u

00(1) = 0

u

000(1) = f(1)

1 Given noisy observations of the loading f(x), solve for the
displacement u(x).

2 Find the maximum displacement |u(x)|.
3 Given the threshold ✏, find the probability of failure.

Q3 DARPA presentation — July 11

th
, 2016 ML meets DE 7/8
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2 Find the maximum displacement |u(x)|.
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Multi-fidelity Bayesian optimization

Idea: We model the response of a system  using deep multi-fidelity surrogates

y = ft(ft�1(...(f1(x)))), fi ⇠ GP(µi(x),⌃t)

Goal: Identify a set of parameters that generates a response matching a target performance   y?

min
x2R

||f(x)� y?||

t = 4t = 3

New
observation

Ac
qu

is
iti

on
 fu

nc
tio

n
P

os
te

ri
or

Ac
qu

is
iti

on
 fu

nc
tio

n
P

os
te

ri
or

Next
point

Then the surrogate posterior distribution 
along with an acquisition function 
suggest a sampling plan than  
balances exploration vs exploitation 
towards identifying a global optimum 

 Example: 1D function maximization
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P. Perdikaris, and G.E Karniadakis. "Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond." J. R. Soc. Interface (2016)



Calibration of blood flow simulations
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Goal:  
Calibrate the outflow boundary  
condition parameters to match  
a target inlet systolic pressure, i.e.,

x

? = argmin
x2X

|p?s � ps(x)|2,

Multi-fidelity approach: 
1.) 3D Navier-Stokes (spectral/hp elements, rigid artery) —> high fidelity O(hrs) 
2.) Non-linear 1D-FSI (DG, compliant artery) —> intermediate fidelity O(mins) 
3.) Linearized 1D-FSI solver around an inaccurate reference state —> low fidelity O(s)

x = [R(1)
T , R(2)

T ]

p?s = 47mmHg

X = [1010, 1011]⇥ [1011, 1012]

P. Perdikaris, G.E. Karniadakis Model inversion via multi-fidelity Bayesian Optimization: A new paradigm for parameter estimation in hemodynamics, and beyond (under review), 2016
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Calibration of blood flow simulations
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Calibration of blood flow simulations
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after 3 iterations of BO, mainly sampling 
the lowest fidelity (cheapest) solver.

Decreased the relative error to O(10�3)
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Limitations, challenges & future directions 

Multi-fidelity stochastic modeling — Paris Perdikaris

Discontinuities and non-stationarity: 

Scalability:

High-dimensions: 

GPs suffer from a cubic scaling with the data

Tensor product kernels suffer from the curse of dimensionality, i.e. the require an 
exponentially increasing amount of training data

X Low-rank approximations to the covariance 

X Frequency-domain learning algorithms

X Stochastic variational inference

GPs struggle to model discontinuous data

X Use warping functions to transform into a jointly stationary input space X H Y
f1 f2

• Log, sigmoid, betaCDF  —> “Warped GPs” 
• Neural networks              —> “Manifold GPs” 
• Gaussian processes        —> “Deep GPs”

X Data-driven additive kernels

X Unsupervised dimensionality-reduction (GPLVM, deep auto-encoders)

Snelson, E., and Z. Ghahramani. "Sparse Gaussian processes using pseudo-inputs."

De Baar, J. H. S., R.P. Dwight, and H. Bijl. "Speeding up kriging through fast estimation of the hyperparameters in the frequency-domain."

Hensman, J., N. Fusi, and N.D. Lawrence. "Gaussian processes for big data."

Snelson, E., C.E. Rasmussen, and Z.Ghahramani. "Warped gaussian processes."

Calandra, R., et al. "Manifold Gaussian processes for regression."

Damianou, A. C., and N.D. Lawrence. "Deep gaussian processes."

P. Perdikaris, D. Venturi, G.E. Karniadakis “Multi-fidelity information fusion algorithms for high dimensional systems and massive data-sets”

Lawrence, N.D. "Gaussian process latent variable models for visualisation of high dimensional data."
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Learning from big data 

At each co-kriging level tmaximize the likelihood of the observations yt

Bottlenecks:

min

{µt,�2
t ,�

2
✏t
,⇢t�1,✓t}

n

2

log(�2
t ) +

1

2

log |Rt(✓t) + �2
✏tI|+

+

1

2�2
t

[yt(xt)� 1tµt � ⇢t�1ŷt�1(xt)]
T
[Rt(✓t) + �2

✏tI]
�1

[yt(xt)� 1tµt � ⇢t�1ŷt�1(xt)]

�. For small noise variance �2
✏t and/or tightly clustered observations the correlation matrix becomes

increasingly ill-conditioned.

�. Each iteration step for minimizing the log-likelihood requires the inversion of a dense,
ill-conditionedNt ⇥Nt covariance matrix.

�. The total cost for estimating the hyper-parameters at each co-kriging level scales asO(mN3
t ), wherem

is the number of iterations required to solve the non-convex minimization problem.

We face the following challenges:

Crunch group seminar, ��/��/���� — Multi-�delity information fusion

Subroutine MLE GMRF FSV
Hyperparameters min� logL(✓) O(mN3

t ) O(mN3/2
t ) O(Nt logNt +mN)

FactorizeRt Rt = LLT O(N3
t ) O(N3/2

t ) O(N3
t )

Predict R�1
t (yt � 1µt) O(MNt) O(MNt) O(MNt)

methods – FMLE and FSV – is that we do not deal with such
matrix operations, and expect this problem to vanish.

2. Two fast methods for estimating the hyperparameters

Let us have a closer look at the computational procedure of
estimating the hyperparameters. In the present work, we use a
Nelder-Mead minimization routine, although gradients of the
likelihood might readily be included (Kitanidis and Lane, 1985).
In the conventional approach, the estimation procedure is illu-
strated by the flow chart in Fig. 1(a). The optimization loop
includes the expensive evaluation of L. It seems computationally
demanding to first construct matrix A from a known generating
function, and then find its eigenvalues and solve a linear system
without using any of our knowledge of its generator.

We propose to reduce the computational cost of the Kriging
prediction by estimating the hyperparamaters y in the frequency
domain, considering the Fourier transforms of the data y and of
the matrix generator a. This changes the estimation procedure to
that of the existing frequency-domain maximum likelihood esti-
mate (FMLE) for uniformly sampled data or that of the new
frequency-domain sample variogram (FSV) for the more general
case of non-uniformly sampled data. Both methods are illustrated
in the flow charts in Fig. 1(b,c). These routines reduce the
computational cost significantly, since the most expensive opera-
tion is now computing the power spectrum using non-uniform
fast Fourier transform NUFFT at cost OðN ln NÞ, instead of the
Cholesky decomposition at cost OðN3Þ, while at the same time it is
now placed outside the optimization loop. For large N4m the
minimization is now virtually independent of m (which is
typically at least m# 100). During the minimization, the problem
of robustness vanishes, as numerical positive definiteness of A
during matrix operations is not an issue.

In the following sections we will discuss both methods in more
detail. As an illustration, we will consider the test-function

yðxÞ ¼ exp %
ðxþc0Þ2

2c2
1

 !
%exp %

ðx%c0Þ2

2c2
1

 !
,

c0 ¼ 0:5,

c1 ¼ 0:1, ð9Þ

which we sample at N¼64 uniformly distributed locations, with
an observation error E¼ 0:001. An example of the acquired data
and Kriging predictor is shown in Fig. 2.

Both methods use the continuous equivalent of the matrix
generator given in (8)

aðhÞ ¼ E2
cdðhÞþexp %

h2
ij

2y2

 !
, ð10Þ

which has the Fourier transform

âðkÞ ¼ E2
f þyN

ffiffiffiffi
p
2

r
exp %

p2k2y2

2

 !

: ð11Þ

The error Ef represents the sum of the noise in the data and the
noise that might be introduced by the (non-uniform) Fourier
transform. This term Ef will be found by optimization in the
frequency domain, simultaneously with y. In the present deriva-
tion we consider a single hyperparameter y. However, both FMLE
and FSV are readily generalized to multiple hyperparameters h,
as will be illustrated in Section 3. For FMLE, instead of optimizing
Ef , one might replace Ef with an exact noise term and an aliasing
term, as is treated in de Baar et al. (2011).

At this point it should be noted, that although we use a
Gaussian covariance function, one can in fact use any parameter-
ized matrix generator a(h), provided that one can find a Fourier
transform âðkÞ, either analytically or numerically.

Fig. 1. The conventional MLE algorithm: (a) places an expensive evaluation of L in the optimization loop, indicated by the gray box, the proposed algorithms FMLE (b) and
FSV (c) reduce the cost of the optimization loop.
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Fig. 2. Data, sampled uniformly from the test-function.
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Wiener–Khinchin theorem:

S(!) =

Z 1

�1
r
xx

(⌧)e�2⇡!⌧d⌧

FSV : min

✓

NX

n=1

| log ŷ2n � log r̂(✓)|2

...i.e. the power spectral density of a wide-sense stationary
process is the Fourier transform of its autocorrelation function.

We can speed up the hyperparamter estimation
by learning the sample variogram in the frequency domain:

Fast learning in the frequency domain
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methods – FMLE and FSV – is that we do not deal with such
matrix operations, and expect this problem to vanish.

2. Two fast methods for estimating the hyperparameters

Let us have a closer look at the computational procedure of
estimating the hyperparameters. In the present work, we use a
Nelder-Mead minimization routine, although gradients of the
likelihood might readily be included (Kitanidis and Lane, 1985).
In the conventional approach, the estimation procedure is illu-
strated by the flow chart in Fig. 1(a). The optimization loop
includes the expensive evaluation of L. It seems computationally
demanding to first construct matrix A from a known generating
function, and then find its eigenvalues and solve a linear system
without using any of our knowledge of its generator.

We propose to reduce the computational cost of the Kriging
prediction by estimating the hyperparamaters y in the frequency
domain, considering the Fourier transforms of the data y and of
the matrix generator a. This changes the estimation procedure to
that of the existing frequency-domain maximum likelihood esti-
mate (FMLE) for uniformly sampled data or that of the new
frequency-domain sample variogram (FSV) for the more general
case of non-uniformly sampled data. Both methods are illustrated
in the flow charts in Fig. 1(b,c). These routines reduce the
computational cost significantly, since the most expensive opera-
tion is now computing the power spectrum using non-uniform
fast Fourier transform NUFFT at cost OðN ln NÞ, instead of the
Cholesky decomposition at cost OðN3Þ, while at the same time it is
now placed outside the optimization loop. For large N4m the
minimization is now virtually independent of m (which is
typically at least m# 100). During the minimization, the problem
of robustness vanishes, as numerical positive definiteness of A
during matrix operations is not an issue.

In the following sections we will discuss both methods in more
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which we sample at N¼64 uniformly distributed locations, with
an observation error E¼ 0:001. An example of the acquired data
and Kriging predictor is shown in Fig. 2.

Both methods use the continuous equivalent of the matrix
generator given in (8)
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The error Ef represents the sum of the noise in the data and the
noise that might be introduced by the (non-uniform) Fourier
transform. This term Ef will be found by optimization in the
frequency domain, simultaneously with y. In the present deriva-
tion we consider a single hyperparameter y. However, both FMLE
and FSV are readily generalized to multiple hyperparameters h,
as will be illustrated in Section 3. For FMLE, instead of optimizing
Ef , one might replace Ef with an exact noise term and an aliasing
term, as is treated in de Baar et al. (2011).

At this point it should be noted, that although we use a
Gaussian covariance function, one can in fact use any parameter-
ized matrix generator a(h), provided that one can find a Fourier
transform âðkÞ, either analytically or numerically.

Fig. 1. The conventional MLE algorithm: (a) places an expensive evaluation of L in the optimization loop, indicated by the gray box, the proposed algorithms FMLE (b) and
FSV (c) reduce the cost of the optimization loop.
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O(N) learning algorithms 

Wiener–Khinchin theorem:

S(!) =

Z 1

�1
r
xx

(⌧)e�2⇡!⌧d⌧

...i.e. the power spectral density of a wide-sense stationary
process is the Fourier transform of its autocorrelation function.

methods – FMLE and FSV – is that we do not deal with such
matrix operations, and expect this problem to vanish.

2. Two fast methods for estimating the hyperparameters

Let us have a closer look at the computational procedure of
estimating the hyperparameters. In the present work, we use a
Nelder-Mead minimization routine, although gradients of the
likelihood might readily be included (Kitanidis and Lane, 1985).
In the conventional approach, the estimation procedure is illu-
strated by the flow chart in Fig. 1(a). The optimization loop
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demanding to first construct matrix A from a known generating
function, and then find its eigenvalues and solve a linear system
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prediction by estimating the hyperparamaters y in the frequency
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The error Ef represents the sum of the noise in the data and the
noise that might be introduced by the (non-uniform) Fourier
transform. This term Ef will be found by optimization in the
frequency domain, simultaneously with y. In the present deriva-
tion we consider a single hyperparameter y. However, both FMLE
and FSV are readily generalized to multiple hyperparameters h,
as will be illustrated in Section 3. For FMLE, instead of optimizing
Ef , one might replace Ef with an exact noise term and an aliasing
term, as is treated in de Baar et al. (2011).

At this point it should be noted, that although we use a
Gaussian covariance function, one can in fact use any parameter-
ized matrix generator a(h), provided that one can find a Fourier
transform âðkÞ, either analytically or numerically.

Fig. 1. The conventional MLE algorithm: (a) places an expensive evaluation of L in the optimization loop, indicated by the gray box, the proposed algorithms FMLE (b) and
FSV (c) reduce the cost of the optimization loop.
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We can speed up the hyperparamter estimation
by learning the sample variogram in the frequency domain:
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High-dimensional kernel design 
Given a set of scattered observations y(x)we can construct a hierarchical functional representation
of the form

of data is often required for performing meaningful inference. This pathology is further
amplified in cases where the noise variance �2

✏t is negligible and/or the observed data points
are tightly clustered in space. Such cases introduce ill-conditioning that may well jeopar-
dize the feasibility of the inversion as well as pollute the numerical solution with errors.
Moreover, if an anisotropic correlation kernel t(xt,x

0
t; ✓t) is assumed, then the vector of

correlation lengths ✓t is d-dimensional, leading to an increasingly complex optimization
problem (see Eq. 10) as the dimensionality of the input variables xt increases. These
shortcomings render the learning process intractable for large data-sets, and suggest seek-
ing alternative routes to parameter estimation. Next, we describe a method that bypasses
the deficiencies of MLE and enables the development of fast learning algorithms that scale
linearly with the data.

2.3.2 Frequency-domain sample variogram fitting

Following the approach of de Baar [] we employ the Wiener-Khinchin theorem to fit the
auto-correlation function of a wide-sense stationary random field to the power spectrum of
the data. The later contains su�cient information for extracting the second-order statistics
that fully describe the Gaussian predictor Zt(x). Therefore, the model hyper-parameters
at each inference level t can be learned in the frequency domain by fitting the Fourier
transform of the sample variogram as

min
{�2

✏t
,✓t}

nX

i=1

| log[ŵt(⇠i)]
2 � log [ât(⇠i;�

2

✏t , ✓t)]|
2, (11)

where ⇠ is a d-dimensional array of frequencies, [ŵ(⇠)]2 is the amplitude of the Fourier co-
e�cients in the modal representation of the data yt(x), â(⇠;�2

✏t , ✓t) is the Fourier transform
of the auto-correlation function {t(xt,x

0
t; ✓t) + �2

✏t�(||xt � x

0
t||)}, with �(·) denoting the

Dirac delta function, and || · || measures distance in an appropriate norm. The Fourier
coe�cients ŵ(⇠) can be e�ciently computed with O(Nt logNt) cost using the fast Fourier
transform (FFT) for regularly spaced samples, or the non-uniform fast Fourier transform
(NUFFT) [] for irregularly spaced samples. Moreover, for a wide class of auto-correlation
functions, the Fourier transform of â(⇠;�2

✏t , ✓t) is analytically available, thereby each eval-
uation of the objective function in the minimization of Eq. 11 can be carried out with
a linear cost, i.e. O(Nt). This directly circumvents the limitations of hyper-parameter
learning using MLE approaches, namely the cubic scaling associated with inverting dense
ill-conditioned correlation matrices, and therefore it enables parameter estimation from
massive data-sets.

A limitation of frequency-domain sample variogram (FSV) fitting is that the summa-
tion in Eq. 11 is implicitly assumed to take place over all dimensions, i.e. over all Nd

t

frequencies in ⇠. Although this is tractable for low-dimensional problems, it may easily
lead to prohibitive requirements both in terms of memory storage and operation count
as the dimensionality increases. In the next section we present a novel methodology for
scalable hyper-parameter learning from massive data-sets in high-dimensions.

2.4 Kernel design in high-dimensions

In many physical systems only relatively low-order correlations of the input variables
will have an impact on the output []. In such cases, high-dimensional model representa-
tions (HDMR) are proven to dramatically reduce the computational e↵ort in representing
the input-output relationships. The general form of the HDMR expansion for a high-
dimensional real-valued function y(x) = y(x

1

, x
2

, . . . , xd)
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+
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yi(xi) +
X
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yij(xi, xj) +
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yijk(xi, xj , xk) + · · · , (12)
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The sensitivity indices identify active interactions in high-dimensional data-sets. This
valuable information can guide the design of correlation kernels that are tailored to the
given data-set, respecting all significant input-output interactions. To this end, we employ
a graph-theoretic approach in which custom correlation kernels can be constructed as an
additive composition of kernels that describe cross-correlations within each one of the
maximal cliques of the undirected graph defined by the HDMR sensitivity indices. The
first step towards this construction involves assembling the undirected graph G = (V,E)
of the computed sensitivity indices, where first-order sensitivities correspond to vertices V ,
while sensitivity indices of higher-order interactions define edges E. Once the undirected
graph is available, a clique, C, can be identified as a subset of the vertices, C ✓ V , such
that every two distinct vertices are adjacent. This is equivalent to the condition that the
subgraph of G induced by C is complete. A maximal clique is a clique that cannot be
extended by including one more adjacent vertex, that is, a clique which does not exist
exclusively within the vertex set of a larger clique (see Fig. 1). Maximal cliques can be
e�ciently identified from the graph of sensitivity indices using the Bron-Kerbosch algorithm
with both pivoting and degeneracy re-ordering [].

This procedure reveals the extend to which the observed data encodes an additive
structure. The key idea here is to exploit this structure in order to e↵ectively decompose
the high-dimensional learning problem in a sequence of lower dimensional tasks where
estimation of model hyper-parameters can take place independently within the support of
each one of the maximal cliques. To this end, recall that fitting the sample variogram in
the frequency domain becomes intractable in high dimensions as the objective functional
in Eq. 11 involves storing and computing Nd entries. However, we can utilize the RS-
HDMR representation in order to exploit the structure encoded in the maximal cliques,
and e�ciently perform FSV fitting locally for each maximal clique. This can be done by
constructing an additive auto-correlation kernel that fully respects the active interactions
within each maximal clique
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The sensitivity indices identify active interactions in high-dimensional data-sets. This
valuable information can guide the design of correlation kernels that are tailored to the
given data-set, respecting all significant input-output interactions. To this end, we employ
a graph-theoretic approach in which custom correlation kernels can be constructed as an
additive composition of kernels that describe cross-correlations within each one of the
maximal cliques of the undirected graph defined by the HDMR sensitivity indices. The
first step towards this construction involves assembling the undirected graph G = (V,E)
of the computed sensitivity indices, where first-order sensitivities correspond to vertices V ,
while sensitivity indices of higher-order interactions define edges E. Once the undirected
graph is available, a clique, C, can be identified as a subset of the vertices, C ✓ V , such
that every two distinct vertices are adjacent. This is equivalent to the condition that the
subgraph of G induced by C is complete. A maximal clique is a clique that cannot be
extended by including one more adjacent vertex, that is, a clique which does not exist
exclusively within the vertex set of a larger clique (see Fig. 1). Maximal cliques can be
e�ciently identified from the graph of sensitivity indices using the Bron-Kerbosch algorithm
with both pivoting and degeneracy re-ordering [].

This procedure reveals the extend to which the observed data encodes an additive
structure. The key idea here is to exploit this structure in order to e↵ectively decompose
the high-dimensional learning problem in a sequence of lower dimensional tasks where
estimation of model hyper-parameters can take place independently within the support of
each one of the maximal cliques. To this end, recall that fitting the sample variogram in
the frequency domain becomes intractable in high dimensions as the objective functional
in Eq. 11 involves storing and computing Nd entries. However, we can utilize the RS-
HDMR representation in order to exploit the structure encoded in the maximal cliques,
and e�ciently perform FSV fitting locally for each maximal clique. This can be done by
constructing an additive auto-correlation kernel that fully respects the active interactions
within each maximal clique

6

This facilitates the computation of sensitivity indices that characterize the active interactions in the data:

28

Maximal cliques (NC = 5):
C1 = {x2, x3, x6}
C2 = {x3, x8}
C3 = {x8, x9, x12}
C4 = {x4, x9, x12}
C5 = {x1, x5, x7, x10, x11} (inactive)

(x,x0; ✓) =
NCX

q=1

q(xq,x
0
q; ✓q), (22)

where NC is the total number of maximal cliques at each recursive co-kriging level. Our
goal now is to estimate the hyper-parameters ✓q by fitting the Fourier transform of each
auto-correlation kernel q(xq,x

0
q; ✓q) to the power spectrum of the data. In order to do so,

we first have to identify the contribution of each maximal clique to the power spectrum of
the d-dimensional data-set. To this end, the RS-HDMR expansion terms can be utilized
to project data onto the sub-manifold defined by each maximal clique as

Pqy(x) = f
0

+
X

i2Cq

yi(xi) +
X

i,j2Cq

yij(xi, xj) +
X

i,j,k2Cq

yijk(xi, xj , xk) + · · · , 1  q  NC ,

(23)
where Cq is an index set listing all active dimensions contained in the qth maximal clique,
and the projection operator Pq is a multivariate integral with respect to all input variables
xq that do not appear in Cq. Then, by assuming a wide-sense stationary covariance kernel
q(xq,x

0
q; ✓q) in each maximal clique, we can employ the FSV learning algorithm to esti-

mate ✓q by fitting the power spectrum of the clique-projected data, which typically live in
a sub-manifold of dimension much lower than d. This approach is motivated by the Fourier
projection-slice theorem [] which formalizes the equivalence between taking the Fourier
transform of a projection versus taking a slice of the full high-dimensional spectrum. In
operator terms, this translates to

FmPm = SmFd, (24)

where Fm is anm-dimensional Fourier transform, Pm is an operator projecting d-dimensional
data onto an m-dimensional sub-manifold, and Sm is an m-dimensional slice operator that
returns an m-dimensional linear sub-manifold through the origin in the Fourier space which
is parallel to the projection sub-manifold []. In our case, the qth sub-manifold lives in the
support of the active dimensions contained in the maximal clique Cq, and the projection
Pq can be directly computed by evaluating Eq. 23 on a regular grid that discretizes the
hypercube defined by Hq = {xi, i 2 Cq|0  xi  1}. The main advantage here is that for
high-dimensional cases that admit an additive RS-HDMR representation, the dimension
of the qth sub-manifold is m = card{Cq} ⌧ d. Hence, the optimal hyper-parameters ✓̂i
defining the auto-correlation kernel in each clique can be estimated very e�ciently using
the FSV fitting algorithm. Finally, summing up all clique contributions in Eq. 22 we can
obtain a global correlation kernel that according to the Fourier projection-slice theorem
captures the power spectrum of the original high-dimensional observations. This allows us
to fit Gaussian random field models to big data in high-dimensions by using O(N) learning
algorithms!

2.5 Implementation aspects

Here we provide an overview of the workflow and discuss some key implementation as-
pects. Starting from a set of available scattered observations yt(x) at the inference level
1  t  s, our first task is to compute the RS-HDMR representation. To this end, we adopt
the approach of [] that employs an orthonormal basis of shifted Legendre polynomials (up
to order 15), using adaptive criteria for the optimal selection of the polynomial order that
approximates each component function, and variance reduction techniques that enhance
the accuracy of the RS-HDMR representation when only a limited number of samples is
available. For all cases considered, an RS-HDMR expansion with up to second-order inter-
action terms was su�cient to capture more than 95% of the variance in the observations.
Once the RS-HDMR representation is computed, we invoke the Bron-Kerbosch algorithm
[] to identify all maximal cliques in the undirected graph of sensitivity indices. This guides

7

Goal: Solve local low-dimensional FSV fitting problems to train the clique-wise kernels.
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High dimensions and large data-sets 
(x,x0; ✓) =

NCX

q=1

q(xq,x
0
q; ✓q), (22)

where NC is the total number of maximal cliques at each recursive co-kriging level. Our
goal now is to estimate the hyper-parameters ✓q by fitting the Fourier transform of each
auto-correlation kernel q(xq,x

0
q; ✓q) to the power spectrum of the data. In order to do so,

we first have to identify the contribution of each maximal clique to the power spectrum of
the d-dimensional data-set. To this end, the RS-HDMR expansion terms can be utilized
to project data onto the sub-manifold defined by each maximal clique as
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where Cq is an index set listing all active dimensions contained in the qth maximal clique,
and the projection operator Pq is a multivariate integral with respect to all input variables
xq that do not appear in Cq. Then, by assuming a wide-sense stationary covariance kernel
q(xq,x
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q; ✓q) in each maximal clique, we can employ the FSV learning algorithm to esti-

mate ✓q by fitting the power spectrum of the clique-projected data, which typically live in
a sub-manifold of dimension much lower than d. This approach is motivated by the Fourier
projection-slice theorem [] which formalizes the equivalence between taking the Fourier
transform of a projection versus taking a slice of the full high-dimensional spectrum. In
operator terms, this translates to

FmPm = SmFd, (24)

where Fm is anm-dimensional Fourier transform, Pm is an operator projecting d-dimensional
data onto an m-dimensional sub-manifold, and Sm is an m-dimensional slice operator that
returns an m-dimensional linear sub-manifold through the origin in the Fourier space which
is parallel to the projection sub-manifold []. In our case, the qth sub-manifold lives in the
support of the active dimensions contained in the maximal clique Cq, and the projection
Pq can be directly computed by evaluating Eq. 23 on a regular grid that discretizes the
hypercube defined by Hq = {xi, i 2 Cq|0  xi  1}. The main advantage here is that for
high-dimensional cases that admit an additive RS-HDMR representation, the dimension
of the qth sub-manifold is m = card{Cq} ⌧ d. Hence, the optimal hyper-parameters ✓̂i
defining the auto-correlation kernel in each clique can be estimated very e�ciently using
the FSV fitting algorithm. Finally, summing up all clique contributions in Eq. 22 we can
obtain a global correlation kernel that according to the Fourier projection-slice theorem
captures the power spectrum of the original high-dimensional observations. This allows us
to fit Gaussian random field models to big data in high-dimensions by using O(N) learning
algorithms!

2.5 Implementation aspects

Here we provide an overview of the workflow and discuss some key implementation as-
pects. Starting from a set of available scattered observations yt(x) at the inference level
1  t  s, our first task is to compute the RS-HDMR representation. To this end, we adopt
the approach of [] that employs an orthonormal basis of shifted Legendre polynomials (up
to order 15), using adaptive criteria for the optimal selection of the polynomial order that
approximates each component function, and variance reduction techniques that enhance
the accuracy of the RS-HDMR representation when only a limited number of samples is
available. For all cases considered, an RS-HDMR expansion with up to second-order inter-
action terms was su�cient to capture more than 95% of the variance in the observations.
Once the RS-HDMR representation is computed, we invoke the Bron-Kerbosch algorithm
[] to identify all maximal cliques in the undirected graph of sensitivity indices. This guides
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Problem: Inference with FSV fitting becomes intractable as it requires storage and operation on Nd  

frequencies

Step 1: Utilize the ANOVA expansion to project the data onto the sub-space defined by each 
maximal-clique, and identify the contribution of each maximal clique in the d-dimensional power 
spectrum

Step 2: Use the Fourier projection-slice theorem to decompose the global high-dimensional 
optimization problem into  local low-dimensional tasks.

Now we can solveNC FSV problems that involveNm points, wherem = card{Cq} ⌧ d, 1  q  NC .

) Learning can be performed by training low-dimensional clique-wise kernels withO(N) cost!!

(x,x0; ✓) =
NCX

q=1

q(xq,x
0
q; ✓q), (22)

where NC is the total number of maximal cliques at each recursive co-kriging level. Our
goal now is to estimate the hyper-parameters ✓q by fitting the Fourier transform of each
auto-correlation kernel q(xq,x

0
q; ✓q) to the power spectrum of the data. In order to do so,

we first have to identify the contribution of each maximal clique to the power spectrum of
the d-dimensional data-set. To this end, the RS-HDMR expansion terms can be utilized
to project data onto the sub-manifold defined by each maximal clique as

Pqy(x) = f
0

+
X
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yi(xi) +
X

i,j2Cq

yij(xi, xj) +
X

i,j,k2Cq

yijk(xi, xj , xk) + · · · , 1  q  NC ,

(23)
where Cq is an index set listing all active dimensions contained in the qth maximal clique,
and the projection operator Pq is a multivariate integral with respect to all input variables
xq that do not appear in Cq. Then, by assuming a wide-sense stationary covariance kernel
q(xq,x

0
q; ✓q) in each maximal clique, we can employ the FSV learning algorithm to esti-

mate ✓q by fitting the power spectrum of the clique-projected data, which typically live in
a sub-manifold of dimension much lower than d. This approach is motivated by the Fourier
projection-slice theorem [] which formalizes the equivalence between taking the Fourier
transform of a projection versus taking a slice of the full high-dimensional spectrum. In
operator terms, this translates to

FmPm = SmFd, (24)

where Fm is anm-dimensional Fourier transform, Pm is an operator projecting d-dimensional
data onto an m-dimensional sub-manifold, and Sm is an m-dimensional slice operator that
returns an m-dimensional linear sub-manifold through the origin in the Fourier space which
is parallel to the projection sub-manifold []. In our case, the qth sub-manifold lives in the
support of the active dimensions contained in the maximal clique Cq, and the projection
Pq can be directly computed by evaluating Eq. 23 on a regular grid that discretizes the
hypercube defined by Hq = {xi, i 2 Cq|0  xi  1}. The main advantage here is that for
high-dimensional cases that admit an additive RS-HDMR representation, the dimension
of the qth sub-manifold is m = card{Cq} ⌧ d. Hence, the optimal hyper-parameters ✓̂i
defining the auto-correlation kernel in each clique can be estimated very e�ciently using
the FSV fitting algorithm. Finally, summing up all clique contributions in Eq. 22 we can
obtain a global correlation kernel that according to the Fourier projection-slice theorem
captures the power spectrum of the original high-dimensional observations. This allows us
to fit Gaussian random field models to big data in high-dimensions by using O(N) learning
algorithms!

2.5 Implementation aspects

Here we provide an overview of the workflow and discuss some key implementation as-
pects. Starting from a set of available scattered observations yt(x) at the inference level
1  t  s, our first task is to compute the RS-HDMR representation. To this end, we adopt
the approach of [] that employs an orthonormal basis of shifted Legendre polynomials (up
to order 15), using adaptive criteria for the optimal selection of the polynomial order that
approximates each component function, and variance reduction techniques that enhance
the accuracy of the RS-HDMR representation when only a limited number of samples is
available. For all cases considered, an RS-HDMR expansion with up to second-order inter-
action terms was su�cient to capture more than 95% of the variance in the observations.
Once the RS-HDMR representation is computed, we invoke the Bron-Kerbosch algorithm
[] to identify all maximal cliques in the undirected graph of sensitivity indices. This guides

7
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Figure 5: Trid function: Left: Density plot of the of the frequency distribution of the exact solution
y = y

3

(x?) (blue solid line), versus the estimated ŷ(x?) (dashed lines) resulting from co-kriging and the
HDMR representation. The red dashed line corresponds to the final co-kriging predictor accounting
for information fusion along the path y

1

! y
2

! y
3

. Right: Scatter plot of the of the exact solution
y = y

3

(x?) (black dashed line), versus the co-kriging predictor ŷ(x?) at each level (circles) at 2,000
test locations, randomly sampled within unit hyper-spheres centered at observations. The black circles
correspond to the final co-kriging predictor accounting for information fusion along the path y

1

! y
2

!
y
3

.

3.3 Stochastic Helmholtz equation in 100 dimensions

We consider the following elliptic problem subject to random forcing and homogeneous
Dirichlet boundary conditions in two input dimensions:
8
>>>>><

>>>>>:

(�2 �r2)u(x;!) = f(x;!), x = (x, y), x 2 D = [0, 2⇡]2,

u(x;!)|
@D = 0,

f(x;!) =
2

d

8
<

:

d/4X

i=1

[!
i

sin(ix) + !
i+d/4

cos(ix)] +

d/4X

i=1

[!
i+d/2

sin(iy) + !
i+3d/4

cos(iy)]

9
=

; ,

(39)
where d = 100 is the total number of random variables representing the forcing term,
and �2 = 1 is the Helmholtz constant, the value of which has been chosen in order to
sustain high-frequency components in the unknown solution field u. The additive forcing
is represented by a collection of independent random variables ! = (!

1

,!
2

, . . . ,!
100

), each
of them drawn from the uniform distribution U(0, 1).

Our goal here is to utilize the proposed multi-fidelity framework to get an accurate
estimate of the probability density of the kinetic energy

E
k

(!) =
1

2

Z
2⇡

0

u2(x, t;!)dx (40)

To this end we consider blending the output of an ensemble of variable fidelity models in
physical space, by employing di↵erent resolutions of a spectral/hp element discretization of
Eq. 39 [13]. Higher fidelity models are obtained by either increasing the number of quadri-
lateral elements that discretize the two-dimensional physical domain D (h-refinement),
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and/or by increasing the polynomial order of the numerical approximation within each
spectral element (p-refinement). In this context, a sample solution to Eq. 39 is approxi-
mated in terms of a polynomial expansion of the form

u(x) =

N

dofX

i=1

w
i

�
i

(x) =
N

elX

e=1

PX

p=0

we

p

�e

p

(x
e

(⇠)), (41)

where N
dof

is the total number of degrees of freedom, ⇠ defines a mapping from the physical
space to the standard element, and �e

p

(x
e

(⇠)) are local to each element polynomials of order
P , which when assembled together under the mapping x

e

(⇠) result to a a C0 continuous
global expansion �

p

(x) [13]. In Figure 6 we present representative samples of the random
forcing field and the numerical solution to Eq. 39.

Figure 6: Stochastic Helmoltz equation: Representative samples of the random forcing term f(x;!)
(left) and the numerical solution u(x;!) (right), obtained using a high-fidelity spectral element dis-
cretization of Eq. 39 with 144 elements and a 10th-order polynomial basis expansion in each element.

We consider 3 levels of fidelity corresponding to di↵erent discretization resolutions in
physical space. In particular, the highest fidelity observations are obtained by from solv-

ing Eq. 39 on a grid of n(3)

e

= 144 uniformly spaced spectral elements using a polynomial
expansion of order p(3) = 10 in each element. This discretization is fine enough to resolve
all high-frequency components in the forcing term and return accurate solution samples of
u(x;!). At the intermediate fidelity level S

2

, we have chosen a discretization consisting

of n(2)

e

= 64 spectral elements of polynomial order p(2) = 8. Similarly, the low fidelity

data S
1

is generated by a discretization of n(1)

e

= 16, and p(1) = 4. Both intermediate
and low-fidelity levels are unable to resolve the high-frequency forcing term (see Fig. 6(a)),
and, consequently, they return solutions that are contaminated with aliasing errors. How-
ever, the computational e↵ort required to obtain a solution sample with the low-fidelity
discretization is one order of magnitude smaller compared to the intermediate-fidelity level,
and two-orders of magnitude smaller compared to the high-fidelity level.

Our goal here is to train a multi-fidelity co-kriging predictor that can accurately emulate
the kinetic energy of the solution to Eq. 39 for any given random sample !. To this end, we
construct nested training sets consisting of 10,000 low-fidelity, 1,000 intermediate-fidelity,
and 100 high-fidelity to Eq. 39 by sampling the random forcing term in [0, 1]100 using a space

16

Helmholtz equation in 2 input dimensions and 100 random variables:

Numerical approximation:

Multi-fidelity

Nel = 144, P = 10

Nel = 64, P = 8

Nel = 16, P = 4

Quantity of interest:

Rough forcing term with 100 random variables

(10,000 samples) 

(1,000 samples) 

(100 samples)
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Samples of the random forcing term Samples of the high-fidelity solution

UQ in a 100-dimensional stochastic PDE 
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• Non-trivial dimensionality 
• Complex clique structure/interactions 
• Accurate estimation of the solution PDF 
• Orders of magnitude speed-up vs brute force MC
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Summary

Multi-fidelity stochastic modeling — Paris Perdikaris

• General data-driven framework for supervised learning from variable-fidelity information 
sources 

• Systematically combine seemingly different physical models (simulations, empirical 
correlations, noisy measurements, etc.), and different approximation methods in probability 
space (collocation, sparse grids, MC, etc.) 

• Exploiting cross correlation between models can lead to orders of magnitude of speed up 

• Applications in uncertainty quantification, optimization, inverse problems, data assimilation, 
and beyond
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Taking the Human Out of the
Loop: A Review of Bayesian
Optimization
The paper introduces the reader to Bayesian optimization, highlighting its methodical
aspects and showcasing its applications.

By Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas

ABSTRACT | Big Data applications are typically associated with

systems involving large numbers of users, massive complex

software systems, and large-scale heterogeneous computing

and storage architectures. The construction of such systems

involves many distributed design choices. The end products

(e.g., recommendation systems, medical analysis tools, real-

time game engines, speech recognizers) thus involve many

tunable configuration parameters. These parameters are

often specified and hard-coded into the software by various

developers or teams. If optimized jointly, these parameters

can result in significant improvements. Bayesian optimization

is a powerful tool for the joint optimization of design choices

that is gaining great popularity in recent years. It promises

greater automation so as to increase both product quality and

human productivity. This review paper introduces Bayesian

optimization, highlights some of its methodological aspects,

and showcases a wide range of applications.

KEYWORDS | Decision making; design of experiments; optimi-

zation; response surface methodology; statistical learning

I . INTRODUCTION

Design problems are pervasive in scientific and industrial
endeavours: scientists design experiments to gain insights

into physical and social phenomena, engineers design
machines to execute tasks more efficiently, pharmaceutical
researchers design new drugs to fight disease, companies
design websites to enhance user experience and increase
advertising revenue, geologists design exploration strate-
gies to harness natural resources, environmentalists design
sensor networks to monitor ecological systems, and
developers design software to drive computers and
electronic devices. All these design problems are fraught
with choices, choices that are often complex and high
dimensional, with interactions that make them difficult for
individuals to reason about.

For example, many organizations routinely use the
popular mixed integer programming solver IBM ILOG
CPLEX1 for scheduling and planning. This solver has 76 free
parameters, which the designers must tune manuallyVan
overwhelming number to deal with by hand. This search space
is too vast for anyone to effectively navigate.

More generally, consider teams in large companies that
develop software libraries for other teams to use. These
libraries have hundreds or thousands of free choices and
parameters that interact in complex ways. In fact, the level
of complexity is often so high that it becomes impossible to
find domain experts capable of tuning these libraries to
generate a new product.

As a second example, consider massive online games
involving the following three parties: content providers,
users, and the analytics company that sits between them.
The analytics company must develop procedures to
automatically design game variants across millions of
users; the objective is to enhance user experience and
maximize the content provider’s revenue.
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Model inversion via multi-fidelity
Bayesian optimization: a new paradigm
for parameter estimation in
haemodynamics, and beyond
Paris Perdikaris1 and George Em Karniadakis2

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

We present a computational framework for model inversion based on
multi-fidelity information fusion and Bayesian optimization. The proposed
methodology targets the accurate construction of response surfaces in par-
ameter space, and the efficient pursuit to identify global optima while
keeping the number of expensive function evaluations at a minimum. We
train families of correlated surrogates on available data using Gaussian
processes and auto-regressive stochastic schemes, and exploit the resulting
predictive posterior distributions within a Bayesian optimization setting.
This enables a smart adaptive sampling procedure that uses the predictive
posterior variance to balance the exploration versus exploitation trade-off,
and is a key enabler for practical computations under limited budgets.
The effectiveness of the proposed framework is tested on three parameter
estimation problems. The first two involve the calibration of outflow bound-
ary conditions of blood flow simulations in arterial bifurcations using
multi-fidelity realizations of one- and three-dimensional models, whereas
the last one aims to identify the forcing term that generated a particular
solution to an elliptic partial differential equation.

1. Introduction
Inverse problems are ubiquitous in science. Being inherently ill-posed, they
require solution paths that often challenge the limits of our understanding, as
reflected by our modelling and computing capabilities. Unlike forward problems,
in inverse problems we have to numerically solve the principal equations (i.e. the
forward problem) multiple times, often hundreds of times. The complexity in
repeatedly solving the forward problem is further amplified in the presence of
nonlinearity, high-dimensional parameter spaces and massive datasets; all
common features in realistic physical and biological systems. The natural setting
for model inversion finds itself within the principles of Bayesian statistics, which
provides a formal ground for parameter estimation, i.e. the process of passing
from prior belief to a posterior predictive distribution in view of data. Here, we
leverage recent advances in machine learning algorithms for high-dimensional
input spaces and big data [1] to design a framework for parameter estimation
in blood flow models of the human circulation. The proposed paradigm aims at
seamlessly using all available information sources, e.g. experimental measure-
ments, computer simulations, empirical laws, etc., through a general multi-
fidelity information fusion methodology in which surrogate models are trained
on available data, enabling one to explore the interplay between all such sources
in a systematic manner.

In general, we model the response of a system as a function y ¼ gðxÞ of d
input parameters x [ Rd. The goal of model inversion is to identify the para-
metric configuration in x that matches a target response y$. This translates
into solving the following optimization problem:

min
x[Rd
kgðxÞ % y$k, ð1:1Þ

& 2016 The Author(s) Published by the Royal Society. All rights reserved.
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Model inversion in high-dimensions

Goal: Developed scalable algorithms for solving high- dimensional inverse problems  

Technical approach:  

• Non-linear dimensionality reduction using supervised deep auto-encoders and/or unsupervised GPLVMs 

• Bayesian optimization in the low-dimensional latent space

3 Task 2: Scalable Algorithms – (MIT/Brown)
• We have developed scalable algorithms of linear complexity and a new algorithm for solving

inverse problems as we highlight here in 200 dimensions and beyond for the Helmholtz
equation.

Motivation: Our goal here is to scale the developed deep network algorithms to solving high-
dimensional inverse problems. Such problems can be generally divided in two categories. For
problems in the first category, we assume that we have observations of the output of a given model
and we are trying to identify the inputs that gave rise to these realizations. For example, this
is the case when estimating the parameters of the Kunz cavitation model so that the numerical
simulations can reproduce given experimental data (see Sec. 2.3.2). In the second category, we
typically have access to computing pairs of inputs and outputs and our goal is to identify the input
configuration that maximizes/minimizes the target output. This is exactly the case when optimizing
the shape of super-cavitating hydrofoils towards maximizing their performance (see Sec. ??). Note
that this discrimination also extends to the stochastic case, for which the input/output pairs can
be random, and measures of risk-averseness can be introduced. In what follows we present an
overview of the proposed methodology for addressing such problems using deep networks, and
provide an illustrative example of parameter estimation in d = 200 dimensions. Details of our
implementation can be accessed in an upcoming publication.

Technical Approach: The key idea here is to combine supervised and unsupervised methods
for non-linear dimensionality reduction with Gaussian processes [10] and Bayesian optimization
[19]. For clarity we limit the discussion here to deterministic problems where, in general, we
model the response of a system as a function y = g(x) of d input parameters x 2 Rd. The goal of
model inversion is to identify the parametric configuration in x that matches a target response y?.
This translates into solving the following optimization problem

min
x2Rd
||g(x) � y?||, (18)

in some suitable norm. In practice, x is often a high-dimensional vector and g is a complex, non-
linear, and expensive to compute map that represents the system’s evolving dynamics. Due to the
high-dimensionality of x, the application of Gaussian process surrogates and Bayesian optimiza-
tion becomes infeasible as the number of required samples to train the GP increases exponentially
wth the dimension. Although this problem was addressed in our Q1 report for regression prob-
lems by employing clique-wise additive kernel decompositions and frequency domain learning
algorithms on big-data, here the setting is inherently di↵erent. The reason for this is that we seek
the optimal x⇤ in Eq. 18 using the minimum number of evaluations of g, hence the available data
for training our surrogates are very scarce. This setting mandates an entirely di↵erent treatment,
and here we propose to employ non-linear dimensionality reduction techniques and transform the
problem to a tractable form.

Gaussian process o↵er a flexible Bayesian non-parametric framework for dimensionality re-
duction. In the unsupervised setting (see Fig. 26(b)) this results to the so called Gaussian process
latent variable model (GPLVM) [10] which aims to learn the non-linear GP map f1 that transforms

30

a latent space H of dimensionality q << d into the observed output X. First put forth by Lawrence
[10], the GPLVM with a linear covariance prior on f1 is known be exactly recover probabilistic
Principal Component Analysis (PCA), while general non-linear covariance priors can lead to very
flexible and expressive non-linear reduction schemes. Moreover, the fully Bayesian nature of the
GPLVM allows for automatically discovering the dimensionality q of the latent space during train-
ing, and also provides uncertainty estimates on the learned latent features. At first sight this seems
appealing and suggests a two-step solution to the optimization problem of Eq. 18. First, one uses
realizations of the inputs X (e.g. a collection of di↵erent hydrofoil shapes) to train the GPLVM f1

mapping and identify a low-dimensional H. Then, the optimization problem can be recast in latent
space as:

min
h2Hq
||g(h) � y?||, (19)

where g(h) = g( f1(x)). This is a low-dimensional optimization problem and can be e�ciently
solved with few realizations of g using Gaussian processes and Bayesian optimization (see Figs. 26(c),(d)).
Once the optimal solution h⇤ has been identified one can use the GPLVM map f1 to transform it
back to the physical coordinates X, i.e. x⇤ = f1(h⇤).

A limitation here is that the bounds of the optimization problem in Eq. 19 cannot be determined,
as the inverse mapping from X to H is unknown. This motivates us to replace the unsupervised
GPLVM model with a particular instance of a supervised deep Gaussian process [3] known as deep
auto-encoder (see Fig. 26(a)). Unlike the GPLVM case, here, the smoothness of the mappings f1

and f2 guarantees preservation of local distances in both the forward and inverse transformations,
i.e. H ! X and X ! H, and allows us to transform the bounds in X into bounds in H such that
the optimization problem in Eq. 19 is now well specified. In the following section we show how
this framework can be applied to e�ciently solve a 200-dimensional inverse problem.
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non-linear dim 
reduction

Multi-fidelity Bayesian optimization

Idea: We model the response of a system  using deep multi-fidelity surrogates

y = ft(ft�1(...(f1(x)))), fi � GP(µi(x), �t)

Goal: Identify a set of parameters that generates a response matching a target performance   y�
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suggest a sampling plan than  
balances exploration vs exploitation 
towards identifying a global optimum 

 Example: 1D function maximization
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X H
f1 f2

X

(a)

(b)

H X
f1

H

(c)

Y
f3

(d)

Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)

32

a latent space H of dimensionality q << d into the observed output X. First put forth by Lawrence
[10], the GPLVM with a linear covariance prior on f1 is known be exactly recover probabilistic
Principal Component Analysis (PCA), while general non-linear covariance priors can lead to very
flexible and expressive non-linear reduction schemes. Moreover, the fully Bayesian nature of the
GPLVM allows for automatically discovering the dimensionality q of the latent space during train-
ing, and also provides uncertainty estimates on the learned latent features. At first sight this seems
appealing and suggests a two-step solution to the optimization problem of Eq. 18. First, one uses
realizations of the inputs X (e.g. a collection of di↵erent hydrofoil shapes) to train the GPLVM f1

mapping and identify a low-dimensional H. Then, the optimization problem can be recast in latent
space as:

min
h2Hq
||g(h) � y?||, (19)

where g(h) = g( f1(x)). This is a low-dimensional optimization problem and can be e�ciently
solved with few realizations of g using Gaussian processes and Bayesian optimization (see Figs. 26(c),(d)).
Once the optimal solution h⇤ has been identified one can use the GPLVM map f1 to transform it
back to the physical coordinates X, i.e. x⇤ = f1(h⇤).

A limitation here is that the bounds of the optimization problem in Eq. 19 cannot be determined,
as the inverse mapping from X to H is unknown. This motivates us to replace the unsupervised
GPLVM model with a particular instance of a supervised deep Gaussian process [3] known as deep
auto-encoder (see Fig. 26(a)). Unlike the GPLVM case, here, the smoothness of the mappings f1

and f2 guarantees preservation of local distances in both the forward and inverse transformations,
i.e. H ! X and X ! H, and allows us to transform the bounds in X into bounds in H such that
the optimization problem in Eq. 19 is now well specified. In the following section we show how
this framework can be applied to e�ciently solve a 200-dimensional inverse problem.
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Deep auto-encoder 
(supervised)

GPLVM 
(unsupervised)

Bayesian optimization in latent space
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Multi-fidelity Bayesian optimization

Idea: We model the response of a system  using deep multi-fidelity surrogates

y = ft(ft�1(...(f1(x)))), fi � GP(µi(x), �t)

Goal: Identify a set of parameters that generates a response matching a target performance   y�

min
x�R

||f(x) � y�||

Then the surrogate posterior distribution 
along with an acquisition function 
suggest a sampling plan than  
balances exploration vs exploitation 
towards identifying a global optimum 

 Example: 1D function maximization

Multi-fidelity stochastic modeling — Paris Perdikaris 14
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Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)
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Workflow: 

1. Create a training set containing a collection of 
randomly sampled spectra 

2. Identify a low-dimensional latent representation by 
training a one-layer deep auto-encoder on the 
random spectra 

3. Perform Bayesian optimization in latent space 

4. Use the deep auto-encoder posterior to map the 
optimal h* back to the physical domain x*

Example in 200 dimensions:

Multi-fidelity Bayesian optimization

Idea: We model the response of a system  using deep multi-fidelity surrogates

y = ft(ft�1(...(f1(x)))), fi � GP(µi(x), �t)

Goal: Identify a set of parameters that generates a response matching a target performance   y�

min
x�R

||f(x) � y�||

Then the surrogate posterior distribution 
along with an acquisition function 
suggest a sampling plan than  
balances exploration vs exploitation 
towards identifying a global optimum 
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Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)

32
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Idea: We model the response of a system  using deep multi-fidelity surrogates
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Goal: Identify a set of parameters that generates a response matching a target performance   y�
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Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)
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Goal: Given a reference solution u*(x), recover the K = 200 
weights, i.e.:

The constraint of Eq. 23 introduces an e↵ective low-dimensionality that the deep auto-encoder will
learn to exploit and finally yield a tractable solution. This setting is indeed reasonable as in most
problems of interest this e↵ective low-dimensionality exists (e.g. a one-layer deep auto-encoder
can accurately compress the 15-dimensional representation of a hydrofoil cross section shape into
a 3-dimensional latent space).

x

u�

k

wk

(a) (b)

Figure 27: Inverse problem in 200 dimensions: (a) The reference solution u⇤(x) exhibits non-trivial
boundary layers and high frequency oscillations. (b) The weights spectrum corresponding to the
reference solution. The slow decay implies that all weights wk are actively contributing in the
forcing term of Eq. 20.

Our workflow proceeds as follows. First, we generate 6K combinations of weights wk by sam-
pling the random spectrum defined above. This operation typically comes at no computational
cost (e.g. for the hydrofoil optimization case, we just have to randomly sample di↵erent possible
shapes). This collection of inputs provides the training set for the deep auto-encoder, where typi-
cally a one- to three-layer deep architecture is su�cient to achieve high compression for all data-
sets we have encountered so far. Once the auto-encoder has been trained, we can determine the
e↵ective dimensionality of the training data-set as well as use the learned latent space to perform
predictions and test the accuracy of the model in reconstructing its training input with quantified
uncertainty (see Fig. 28).
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Reference solution u*(x)

The constraint of Eq. 23 introduces an e↵ective low-dimensionality that the deep auto-encoder will
learn to exploit and finally yield a tractable solution. This setting is indeed reasonable as in most
problems of interest this e↵ective low-dimensionality exists (e.g. a one-layer deep auto-encoder
can accurately compress the 15-dimensional representation of a hydrofoil cross section shape into
a 3-dimensional latent space).
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Figure 27: Inverse problem in 200 dimensions: (a) The reference solution u⇤(x) exhibits non-trivial
boundary layers and high frequency oscillations. (b) The weights spectrum corresponding to the
reference solution. The slow decay implies that all weights wk are actively contributing in the
forcing term of Eq. 20.

Our workflow proceeds as follows. First, we generate 6K combinations of weights wk by sam-
pling the random spectrum defined above. This operation typically comes at no computational
cost (e.g. for the hydrofoil optimization case, we just have to randomly sample di↵erent possible
shapes). This collection of inputs provides the training set for the deep auto-encoder, where typi-
cally a one- to three-layer deep architecture is su�cient to achieve high compression for all data-
sets we have encountered so far. Once the auto-encoder has been trained, we can determine the
e↵ective dimensionality of the training data-set as well as use the learned latent space to perform
predictions and test the accuracy of the model in reconstructing its training input with quantified
uncertainty (see Fig. 28).
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Decay of reference weights

Multi-fidelity Bayesian optimization

Idea: We model the response of a system  using deep multi-fidelity surrogates

y = ft(ft�1(...(f1(x)))), fi � GP(µi(x), �t)

Goal: Identify a set of parameters that generates a response matching a target performance   y�

min
x�R

||f(x) � y�||

Then the surrogate posterior distribution 
along with an acquisition function 
suggest a sampling plan than  
balances exploration vs exploitation 
towards identifying a global optimum 

 Example: 1D function maximization
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Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)
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Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)
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Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)
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Figure 28: Inverse problem in 200 dimensions: (a) Importance of each one of the three latent di-
mensions that the deep auto-encoder discovered. (b) Accuracy of the deep auto-encoder to recon-
struct the training input weights wk by sampling the three-dimensional latent space (black markers
denote predictions while the solid line is the exact solution.

Second, we employ this low-dimensional latent space to setup a Bayesian optimization problem
for solving Eq. 19. For this particular problem, the auto-encoder was able to successfully recover
the underlying three dimensions associated with the parameters ↵, �, and � of the random spectrum
s(k), leading to a three-dimensional Bayesian optimization problem in latent space which can be
e�ciently solved by evaluating u( f2(h)) = u(x) from numerically solving Eq. 20 at the points
suggested by the chosen acquisition function. As shown in Fig. 29 this iterative procedure leads
to a rapid decrease of the objective function in Eq. 22 to 3.750090e-03 only after a few Bayesian
optimization iterations. Essentially, we are able to accurately recover the 200 unknown weights wk

with error less than 1% by only using 22 solution samples of Eq. 20.
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(a) (b) (c)

Figure 29: Inverse problem in 200 dimensions: (a) Distance between two consecutive candidate
points in latent space as suggesting by the expected improvement acquisition function. The de-
crease observed after the 20th iteration is a sign that the Bayesian optimization loop has confidently
converged to the global optimum. (b) Value of the objective function in Eq. 22 at each Bayesian
optimization iteration. (c) Uncertainty associated with the next suggested sample chosen by the
expected improvement acquisition function.

4 Major Task 3: Risk-Averse Optimization – (NPS/MIT)
In this section, we report about the successful accomplishment of the goals for the first six months
for Major Task 3. Specifically, we give a risk-averse decision framework for design of complex,
physical systems. The central novelty of the framework is that it does not result in the mathemat-
ical formulation of optimization problems and the associated “optimal” designs. Instead, it places
the focus on identifying designs that are satisfactory according to requirements that might vary as
the design process advances. Thus, our framework places on a rigorous mathematical footing the
“set-based design” philosophy of the US Navy. In addition to responding to actual needs in the
design community, our framework turns out to be fundamentally advantageous as compared to a
traditional approach based design optimization. We make this claim precise in a deep theoretical
result about the stability of sublevel-sets under approximation errors. We exercise the framework
by formulating the problem of designing a super-cavitating hydrofoil. We also illustrate numeri-
cally a full cycle of an early design stage.

The section continues by describing the design situation under consideration, giving details
about our framework, and describing the design case.

4.1 Situation and Challenges
We recognize that nearly all complex physical systems are designed through a process involving
several stages. For simplicity, we consider three stages: early, intermediate, and advanced stages
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Convergence of Bayesian optimization in latent space 
(notice that only 21 evaluations of the PDE are required to 

get an accuracy of O(1e-3))

Dimensionality of the discovered latent space 
(notice how the deep auto-encoder recovered 
the 3-parameter dependence of the random 

spectra)

Accuracy of learned weights in 
reconstructing the reference solution 

(Relative L2 error: 3.750090e-03) 

The constraint of Eq. 23 introduces an e↵ective low-dimensionality that the deep auto-encoder will
learn to exploit and finally yield a tractable solution. This setting is indeed reasonable as in most
problems of interest this e↵ective low-dimensionality exists (e.g. a one-layer deep auto-encoder
can accurately compress the 15-dimensional representation of a hydrofoil cross section shape into
a 3-dimensional latent space).
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Figure 27: Inverse problem in 200 dimensions: (a) The reference solution u⇤(x) exhibits non-trivial
boundary layers and high frequency oscillations. (b) The weights spectrum corresponding to the
reference solution. The slow decay implies that all weights wk are actively contributing in the
forcing term of Eq. 20.

Our workflow proceeds as follows. First, we generate 6K combinations of weights wk by sam-
pling the random spectrum defined above. This operation typically comes at no computational
cost (e.g. for the hydrofoil optimization case, we just have to randomly sample di↵erent possible
shapes). This collection of inputs provides the training set for the deep auto-encoder, where typi-
cally a one- to three-layer deep architecture is su�cient to achieve high compression for all data-
sets we have encountered so far. Once the auto-encoder has been trained, we can determine the
e↵ective dimensionality of the training data-set as well as use the learned latent space to perform
predictions and test the accuracy of the model in reconstructing its training input with quantified
uncertainty (see Fig. 28).
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The constraint of Eq. 23 introduces an e↵ective low-dimensionality that the deep auto-encoder will
learn to exploit and finally yield a tractable solution. This setting is indeed reasonable as in most
problems of interest this e↵ective low-dimensionality exists (e.g. a one-layer deep auto-encoder
can accurately compress the 15-dimensional representation of a hydrofoil cross section shape into
a 3-dimensional latent space).
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Figure 27: Inverse problem in 200 dimensions: (a) The reference solution u⇤(x) exhibits non-trivial
boundary layers and high frequency oscillations. (b) The weights spectrum corresponding to the
reference solution. The slow decay implies that all weights wk are actively contributing in the
forcing term of Eq. 20.

Our workflow proceeds as follows. First, we generate 6K combinations of weights wk by sam-
pling the random spectrum defined above. This operation typically comes at no computational
cost (e.g. for the hydrofoil optimization case, we just have to randomly sample di↵erent possible
shapes). This collection of inputs provides the training set for the deep auto-encoder, where typi-
cally a one- to three-layer deep architecture is su�cient to achieve high compression for all data-
sets we have encountered so far. Once the auto-encoder has been trained, we can determine the
e↵ective dimensionality of the training data-set as well as use the learned latent space to perform
predictions and test the accuracy of the model in reconstructing its training input with quantified
uncertainty (see Fig. 28).
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Model inversion in high-dimensions 



Example: Poisson equation (10D)

38

Remarks:

• Noisy, multi-fidelity data on f, noisy boundary conditions on u.
• Good accuracy and automatic detection of effective dimensionality
• A-posteriori error estimates through the GP posterior variance

yi = fi(xi) + ✏i, i = 1, 2,
✏1 ⇠ N (0, 0.3I), ✏2 ⇠ N (0, 0.05I),
f2(x) = �8⇡2 sin(2⇡x1) sin(2⇡x3), and f1(x) = 0.8f2(x)� 40

Q10
d=1 xd + 30,

u0 = u2(x0) + ✏0 with ✏0 ⇠ N (0, 0.01I),

u2(x) =
QD

d=1 sin(2⇡xd)

i
i
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(c)(a) (b) (d)

||u2(x)� u2(x)||2
||u2(x)||2

= 3.16⇥ 10�2

Fig. 3. Multi-fidelity regression through the ten-dimensional Laplace operator: (a) Exact solution u2(x), predictive mean u2(x), and two-standard-

deviations band around the mean u2(x). This one-dimensional slice plot is generated by fixing x = (x1, 1/4, . . . , 1/4), with x1 2 [0, 1]. (b) Histogram of the exact

solution u2(x) evaluated at 1000 randomly chosen test points versus the predictive mean u2(x). (c) Scatter plot of the exact solution u2(x) (red-dashed line) versus

the predictive mean u2(x) (black point cloud). Also shown is the relative L2 error between the exact and approximated solution. (d) ARD weights w
d,1 and w

d,2,

d = 1, . . . , 10, learned from the low- and high-fidelity training data. Notice how the algorithm can automatically detect the active dimensions 1 and 3.

||u2(x)� u2(x)||2
||u2(x)||2

= 7.08⇥ 10�2

(a)
(b) (c)

Fig. 4. Multi-fidelity regression through a time-dependent advection-di↵usion-reaction operator: (a) Predictive mean u2(t, x), contour of the
exact solution u2(t, x), boundary data u0, and the resulting relative L2 error. (b) Computed two-standard-deviation around the predictive mean u2(t, x). (c) Point-wise

absolute error between the predictive mean u2(t, x) and the exact solution u2(t, x). Also shown are locations of the low- and high-fidelity training data on f1(t, x) and

f2(t, x), as well as the boundary data on u2(t, x).

immune to any restrictions arising due to time-stepping, e.g.
consistency and stability issues. As shown in Fig. 4(a), a
reasonable reconstruction of the solution can be achieved us-
ing only 8 noisy observations of the high-fidelity forcing term
f2(t, x). More importantly, the error in the prediction is well
quantified by the posterior variance shown in Fig. 4(b) that is
in good agreement with the absolute point-wise error between
the predicted and exact solution shown in Fig. 4(c).

Fractional sub-di↵usion operator.Consider the following one
dimensional fractional operator

L
x

u2(x) = �1D

↵

x

u2(x)� u2(x), [12]

where ↵ 2 R is the fractional order of the operator that is
defined in the Riemann-Liouville sense [12]. Such operators
often arise in modeling anomalous transport, and their non-
local nature poses serious computational challenges as it in-
volves costly convolution operations for resolving the under-
lying non-Markovian dynamics [12]. Bypassing the need for
numerical discretization, our regression approach overcomes

these computational bottlenecks, and can seamlessly handle
all such linear cases without any modifications. The only tech-
nicality induced by fractional operators has to do with deriving
the kernel k(x, x0; ✓) in Eq. 3. Here, k(x, x0; ✓) was obtained
by taking the inverse Fourier transform [12] of

[(�iw)↵(�iw

0)↵ � (�iw)↵ � (�iw

0)↵ + 1]ĝ(w,w

0; ✓),

where ĝ(w,w

0; ✓) is the Fourier transform of the kernel
g(x, x0; ✓) in Eq. 3.

Let us now assume that the low- and high-fidelity data
{{x1,y1}, {x2,y2}} are generated according to y

i

= f(x
i

)+✏

i

where i = 1, 2, ✏1 ⇠ N (0, 0.3I), ✏2 ⇠ N (0, 0.05I), f2(x) =
2⇡ cos(2⇡x)� sin(2⇡x), and f1(x) = 0.8f2(x)� 5x. The train-
ing data x1,x2 with sample sizes n1 = 15, n2 = 5, respectively,
are randomly chosen in the interval [0, 1] according to a uni-
form distribution. We also assume that we have access to data
{x0,u0} on u2(x). In this example, we choose x0 = [0 1]T and
u0 = u2(x0). Notice that

u2(x) =
1
2
e

�2i⇡x

✓ �i+ 2⇡
�1 + (�2i⇡)↵

+
e

4i⇡x(i+ 2⇡)
�1 + (2i⇡)↵

◆
,
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