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Current cardiac growth models are able to predict patterns of
hypertrophy in response to various hemodynamic perturbations such
as concentric hypertrophy in pressure overload (PO) and eccentric
hypertrophy in volume overload (VO)
Computational models with the ability to predict patient-­specific time
courses of growth and remodeling of the heart could have useful
clinical applications
Key clinical questions, however, often involve whether or how the
heart will reverse remodel following an intervention

Objective: Evaluate the ability of a cardiac growth model [1] to predict
reverse remodeling in a canine model of pressure overload (PO) [2].

Cardiac growth law [1]:
Fiber axial growth (lengthening) is driven by:

∆ in maximum fiber strain from baseline levels.
Usually occurs at diastole.

Cross-­fiber and fiber radial growth (thickening) is driven by:
∆ in minimum of 1st principal strain of the cross-­sectional
strain from baseline levels.

Usually occurs during systole
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Our model matched the experimental increase in maximum LV
pressure with banding and decrease following unloading.
Predicted changes in LV dimensions were in agreement with
experimental data.
Following unloading, pressures returned to baseline values but
strains did not;; thus, the strain-­based growth law did not predict
reverse remodeling.
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Figure 2: Model-­‐predicted changes in LV dimensions matched experimental
results from [2]. A) LV anterior-­‐posterior cavity diameter. Our model
predicted an average of 4% radial growth and little reversal after PO release.
B) LV lateral wall thickness at end-­‐diastole. Our model predicted an average
of 10% radial growth and little reversal after PO release.

Finite element (FE) model:
We utilized a framework consisting of a beating biventricular canine
heart with realistic myofiber structure, coupled to a lumped parameter
model of the systemic and pulmonary circulation (CircAdapt) [1].
Hill-­type active and Fung-­type passive mechanics were modeled for the
myocardium.
Simulations were conducted in Continuity v.6.4b
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Growth simulation and model validation:
For baseline, acute, and all growth simulations, the FE model was
coupled to the circulation model and run to a circulatory steady state
Aortic stenosis (PO) was simulated by reducing the circulatory
parameter associated with the aortic valve area. These parameters
were kept consistent for 12 forward growth steps (~18 days).
After forward growth, circulatory parameters were returned to baseline
values, and models were run for 3 reverse growth steps (~5 days)
Model predictions were compared to experimental data from [2].

Figure 1: Returning circulation parameters to baseline levels after growth caused max
LV pressures to return to baseline levels and end-­‐diastolic pressures to drop below
baseline levels. Left ventricular pressure-­‐volume loops for baseline, acute PO, forward,
and reverse growth.

baseline (black)

PO acute (blue, solid) PO growth, step 12 
(blue, dashed)

1st reverse step (cyan, solid)

3 reverse steps 
(cyan, dashed)

Hemodynamics Hypertrophy

Stimuli changes

Figure 3: The model predicted little reverse remodeling because strains dropped to
(but not below) baseline values with unloading. Fiber thickening stimulus at the end of
forward growth is high as indicated by yellow and red. When PO is released, stimulus
values drop to near zero indicated by green, indicating that elastic strains return to
baseline strain values.
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