Credible Image-Based Modeling and Simulation of Mitral Valve

Andrew Drach ¹, Amir H. Khalighi ¹, Bruno V. Rego ¹, Michael S. Sacks ¹, Joseph H. Gorman III ², Robert C. Gorman ²

> ¹ Willerson Center for Cardiovascular Modeling & Simulation Institute for Computational Engineering and Science The University of Texas at Austin

> > ² Gorman Cardiovascular Research Group Perelman School of Medicine University of Pennsylvania

Mitral Valve (MV)

- 2 cusps (unique)
- 4~6 cm² orifice area (largest)
- Bearing >100 mmHg transvalvular pressure (healthy)
- "Beating" >100,000 a day (~80 beats/min)

Annulus

R1: Define context clearly

- Objectives
 - Provides local strain estimates across entire valve
 - Extendible to *in silico* perturbation studies
 - Non-invasive image-based method
- Physics-based morphing approach, calibrated using acquired imaging data
- Rely only on geometric data extractable in vivo

R2: Use appropriate data

Materials

- Five ovine MVs
- Dimensionally Compatible with the Georgia Tech Left Heart Simulator (GTLHS)

Methods

- In-vitro simulation of 9 states in GTLHS with tristate annulus holder
- Each MV was instrumented with ~100 fiducial markers
- Micro-CT imaging of MV geometry in each sate
- Collagen-fiber architecture imaging using SALS

Normal / Healthy

healthy annulus healthy PM positions **Dilated** dilated flat annulus displaced PMs

Surgically Modified

dilated flat annulus displaced PMs

Major Data Processing Steps

FOR COMPUTATIONAL ENGINEERING & SCIENCES

R5: Use version control [GIT]

Author Cor	mmit M	/lessage	Date
Andrew Drach boc	cd2bb re	efactoring, minor fixes, add new features + Add [Leaflets] histogram fro	2017-03-07
Andrew Drach 5e4	138c3 re	efactoring, minor fixes	2017-02-25
Andrew Drach 114	100be m	ninor updates, refactoring	2017-02-20
🙆 Andrew Drach eac	:5d2b n	ew features, bug fixes + [Abaqus]: added MVCT prestrain; 2D leaflet ou	2017-01-25
🝳 Andrew Drach ce4	leba3 +	[Abaqus]: added Abaqus pre- and post-processing module + [BCS]: a	2016-12-15
🙆 Andrew Drach 🛛 ⴰⴰⴰ)da9d +	[Chordae]: added a module to perform projection, flaring, and export	2016-10-08
Andrew Drach c5f	-0826 +	Added a new module [BCS] for processing of boundary conditions data	2016-10-08
Andrew Drach 666	60236 +	[Leaflets]: added thickness processing functionality + [CFA]: added affi	2016-10-08
Andrew Drach 3c6	ee58 -	added the pipeline for processing of CFA data - minor update to the O	2016-09-20
🝳 Andrew Drach cf4	Ibda6 U	pdated the code for Chordae processing, added the meshing module	2016-09-20
Andrew Drach 191	- Lcbcd	Added a script to design new marker locations - Minor update to the	2016-08-23
Andrew Drach 3d7	70a85 -	Finished the morphing scripts [OpenClosed-02 and Open-Closed-03]	2016-08-18
🙆 Andrew Drach 🛛 🕫	- 3266	Added export of boundary curves to MAT file in [Leaflets-02-map_mar	2016-08-15
🚨 Andrew Drach 🛛 🗗 ศรีล	a3918 fi	nished working on [Leaflets-02-map_markers]	2016-08-12
Andrew Drach 26d	1c516 M N	Nerged in parameterize-env (pull request #1) added parameterization o	2016-08-11
Andrew Drach 7fc	:b814 a	dded parameterization of environmental variables in env.paths	2016-08-11
Andrew Drach 0e7	7cc51 St	trippped down version	2016-08-10
Andrew Drach 915	609ab Ir	nitial commit	2016-08-10

Unfortunately, no version control for the documentation (user guides)

	aacquate	<u>• y</u>
	Name Last Modified	File size
	10 months ago	
l Cold	a year ago	
post-processing	8 months ago	
U utils	a year ago	
Abaqus-01-input.ipynb	8 months ago	58.4 kB
Abaqus-02-post-chordae.ipynb	a year ago	7.78 kB
Abaqus-02-post-leaflets-Copy1.ipynb	a year ago	24.2 kB
Abaqus-02-post-leaflets.ipynb	a year ago	26.2 kB
Abaqus-03-post-leaflets-CAS.ipynb	8 months ago	13.7 kB
Abaqus-03-post-leaflets-histogram.ipynb	8 months ago	1.29 MB
Abaqus-03-post-leaflets-stats.ipynb	8 months ago	8.67 kB
Abaqus-04-marker-errors.ipynb	10 months ago	2.24 MB
Abaqus-04-post-leaflets-averaging.ipynb	8 months ago	15.9 kB
BCS-01-extract-data.ipynb	a year ago	11.7 kB
BCS-01-in-vivo-annulus.ipynb	a year ago	50.9 kB
BCS-02-annulus-disps.ipynb	a year ago	11.3 kB
BCS-03-origin-disps.ipynb	a year ago	6.57 kB
BCS-04-compare-annuli.ipynb	2 years ago	180 kB
CalcTriMeasures.ipynb	2 years ago	11 kB
CFA-01-readSALS.ipynb	a year ago	1.98 MB

R6: Document adequately

Import modules

R1: Define context clearly

The University of Texas at Austin

ENGINEERING & SCIENCES

Illustration of Simulation Results

<u>R9: Test competing implementations</u> <u>R10: Conform to standards</u>

Unfortunately, no comparison to the external / independent models, approaches or standards

Sensitivity Studies: Resolution of Features ¹²

Sensitivity Studies: FE Discretization

Sensitivity Studies: Chordae Prestrain

The University of Texas at Austin

FOR COMPUTATIONAL ENGINEERING & SCIENCES

Simulation Results

<u>R3: Evaluate within context (in-vivo)</u> Accuracy of the Method

R4: List limitations explicitly Accuracy of strain estimates

We have chosen to use a uniform thickness and uniform downward chord-mimicking force

<u>R7: Disseminate broadly</u> <u>R8: Get independent reviews</u>

PEER-REVIEWED PUBLICATIONS

- Khalighi AH, Rego BV, Drach A, Gorman RC, Gorman JH, Sacks MS. "Development of a Functionally Equivalent Model of the Mitral Valve Chordae Tendineae Through Topology Optimization" [Under Review] <u>Annals of biomedical engineering</u>. 2018
- Rego BV, Khalighi AH, Drach A, Lai EK, Pouch AM, Gorman RC, Gorman JH, Sacks MS. "A non-invasive method for the determination of in vivo mitral valve leaflet strains" [Under Review]] <u>International journal for</u> <u>numerical methods in biomedical engineering</u>. 2018
- 3. Ayoub S. Tsai KC, Khalighi AH, Sacks MS. "The Three-Dimensional Microenvironment of the Mitral Valve: Insights into the Effects of Physiological Loads" [In press]. <u>Cellular and Molecular Bioengineering</u>
- 4. Sacks MS, Khalighi AH, Rego BV, Ayoub S, Drach A. "On the need for multi-scale geometric modelling of the mitral heart valve". <u>Healthcare technology letters</u>. 2017 Oct 25;4(5):150

.

9. Drach A, Khalighi AH, ter Huurne FM, Lee CH, Bloodworth C, Pierce EL, Jensen MO, Yoganathan AP, Sacks MS. "Population-averaged geometric model of mitral valve from patient-specific imaging data". Journal of medical devices. 2015 Sep 1;9(3):030952.

PRESENTATIONS AT INTERNATIONAL CONFERENCES

Acknowledgments

People:

- Charles H. Bloodworth IV (GeorgiaTech)
- Eric L. Pierce (GeorgiaTech)

Funding

• NHLBI NIH Grant R01HL119297

Summary

Rule	Status of Implementation
R1: Define context clearly	GOOD
R2: Use appropriate data	GOOD
R3: Evaluate within context	GOOD
R4: List limitations explicitly	AVERAGE (not comprehensive enough to be used immediately in the clinical applications)
R5: Use version control	GOOD
R6: Document adequately	AVERAGE (lack of tutorials, user guide)
R7: Disseminate broadly	GOOD
R8: Get independent reviews	AVERAGE (lack of review by independent users)
R9: Test competing implementations	AVERAGE (lack of comparison against independent models/approaches)
R10: Conform to standards	BAD

