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Mitral Valve (MV)

• 2 cusps (unique)

• 4~6 cm2 orifice area (largest)

• Bearing >100 mmHg transvalvular pressure (healthy)

• “Beating” >100,000 a day (~80 beats/min) Annulus

Leaflets

Papillary 

Muscles

Chordae 

Tendineae
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• Objectives
– Provides local strain estimates across entire valve

– Extendible to in silico perturbation studies

– Non-invasive image-based method

• Physics-based morphing approach, calibrated using 
acquired imaging data

• Rely only on geometric data extractable in vivo

R1: Define context clearly
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Materials

• Five ovine MVs

• Dimensionally Compatible with the Georgia Tech Left Heart Simulator (GTLHS)

Methods

• In-vitro simulation of 9 states in GTLHS with tristate annulus holder

• Each MV was instrumented with ~100 fiducial markers

• Micro-CT imaging of MV geometry in each sate

• Collagen-fiber architecture imaging using SALS

R2: Use appropriate data 4
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End-diastolic (unloaded) state images

Trimming

Geometric modeling of 
leaflets:

Superquadric fitting + 
spectral analysis

Filtering/Segmentation
Morphological labeling

Thickness

Reconstructed median surface with 
superimposed thickness field

End-systolic (pressurized) state images

Trimming

Extraction of centerlines & pointwise CSA 
(curve-skeleton representation)

Filtering/Segmentation
Morphological labeling

Reconstructed Chordae Tendineae
with superimposed CSA

Major Data Processing Steps

ScanIP

Fiji ImageJ



R5: Use version control [GIT]

Unfortunately, no version control for the documentation (user guides)
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R6: Document adequately 7



R6: Document adequately 8
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High-fidelity reference model: 
healthy open (0 mmHg)

healthy @ 30 mmHg healthy @ 100 mmHg

dilated @ 30 mmHg dilated @ 100 mmHg

SM @ 30 mmHg SM @ 100 mmHgsurgically modified  @ 0 mmHg

dilated @ 0 mmHg

healthy @ 30 mmHg healthy @ 100 mmHg

dilated @ 30 mmHg dilated @ 100 mmHgdilated @ 0 mmHg

healthy@ 0 mmHg

Physio AP @ 30 mmHg Physio AP @ 100 mmHgPhysio AP @ 0 mmHg

CALIBRATION

VALIDATION

PREDICTION
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Leaflets MVCT

Normal Dilated Flat-ring repair

Illustration of Simulation Results



R9: Test competing implementations
R10: Conform to standards

Unfortunately, no comparison to the external / independent models, approaches or standards



12Sensitivity Studies: Resolution of Features

30x30 (97%)20x20 (93%)10x10 (80%) 50x50 (99.6%) 100x100 (100%)
Thickness

𝑬𝑪𝑪

𝝌𝑪𝑪



13Sensitivity Studies: FE Discretization
N200N150N100

2,610 tri
elm.size ~0.94 mm

5,770 tri
elm.size ~0.63 mm

10,338 tri
elm.size ~0.47 mm

𝑬𝑪𝑪

𝝌𝑪𝑪



14Sensitivity Studies: Material Model
PD = mapped, 𝜎=30°PD = CC, 𝜎=30°Isotropic Fully mapped PD, 𝜎

𝑬𝑪𝑪

𝝌𝑪𝑪

𝜆

𝑆
, k

Pa

Simplified Structural Model (SSM)
by Fan&Sacks 2014

𝜇𝑚 = 10.11 kPa
𝑐0 = 0.0485 kPa
𝑐1 = 24.26
𝜎 = 22.94°
𝐸𝑢𝑏 = 0.55



15Sensitivity Studies: Chordae Prestrain

𝑺𝟎
S = 436 kPa

F = Reactionavg Favg S
Fully mapped 

pre-strainF = 0.37 N

𝑬𝑪𝑪

𝝌𝑪𝑪



16Simulation Results

HIGHLOW HIGHLOW HIGHLOW

Normal Diseased Repaired
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R3: Evaluate within context (in-vitro) 17
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R3: Evaluate within context (in-vivo)
Accuracy of the Method
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p	=	0.240	

	

p	=	0.808	

n	=	9	 n	=	3	



R4: List limitations explicitly
Accuracy of strain estimates

We have chosen to use a uniform thickness and uniform downward chord-mimicking force
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R7: Disseminate broadly
R8: Get independent reviews
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Unfortunately, no external / independent users due to some limitations on dissemination
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Rule Status of Implementation

R1: Define context clearly GOOD

R2: Use appropriate data GOOD

R3: Evaluate within context GOOD

R4: List limitations explicitly
AVERAGE (not comprehensive enough to be used immediately in 

the clinical applications)

R5: Use version control GOOD

R6: Document adequately AVERAGE (lack of tutorials, user guide)

R7: Disseminate broadly GOOD

R8: Get independent reviews AVERAGE (lack of review by independent users)

R9: Test competing 

implementations

AVERAGE (lack of comparison against independent 

models/approaches)

R10: Conform to standards BAD

Summary


