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Passive muscles 
for stability 3 types of cells: excitatory (E), fast-spiking inhibitory (I), and 

low-threshold spiking inhibitory (IL), each with 3 types of 
synaptic inputs (AMPA, NMDA and GABA), all based on 
realistic physiological parameters. 

The reinforcement learning system is divided into an Actor, 
mapping perceptions to actions, and a Critic providing reward 
and punishment feedback to the actor.  
 
The neural network (Actor) consists of proprioceptive (P) 
neurons, sensory (S) neurons, and motor (M) neurons. 
 
Each P cell was tuned to fire for a narrow range of particular 
muscle lengths for one of the 4 muscles.  
 
The window-averaged firing rate of M subpopulations was used 
to generate the muscle excitation.  
 
The network effectively performes a mapping between arm 
state, as measured by muscle length, and the muscle 
excitation required to drive the arm to the target.	  

Individual neurons are 
efficiently modeled as rule-
based dynamical units 
(event-driven), reproduces 
key features found in real 
neurons (adaptation, 
bursting, depolarization 
blockade, and voltage-
sensitive NMDA 
conductance). 
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The musculoskeletal model includes 8 rigid bodies, 7 joints, 14 muscle branches divided into 4 muscle 
groups, leading to 2 degrees of freedom.Muscles are an extension of Hills muscle model. 
Excitation is provided as a normalized value between 0 and 1, and can be interpreted as the EMG. At 
every time step, given the input excitation to each muscle, the model calculates the muscle activation, 
fiber and tendon lengths, force, contraction velocity, and the position and velocity of each of the joints. 
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CONCLUSIONS 
•  Reinforcement learning allows the system to learn the appropriate mappings between neural 

populations required for the virtual arm to reach different targets. 
•  The modeled arm trajectories, muscle activations (EMG), and neural dynamics validated against 

data recorded during arm-reaching experiments. 
•  MSM can potentially be used to study motor system disorders, TBI, etc. 
•  MSM also paves the way towards a full closed-loop biomimetic brain-effector learning system 

that can be incorporated in a neural decoder for real-time prosthetic control. 
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NEURON	  MODEL	  

AUTOMATED	  PARAMETER	  TUNING	  
•  Evolutionary algorithm with tournament selection, weak-elitism generational replacement, 

40% Gaussian mutation,  50% crossover, and a population of 200 individuals. 
•  Parallel implementation using 500-core HPC (cluster) 
•  Synaptic weights are NOT directly optimized; instead we evolved the learning/training 

metaparameters of the model (indirect encoding), such as the learning rate. 
•  Fitness function aimed at minimizing arm trajectory error after training 
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