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Executive Summary 
The Interagency Modeling and Analysis Group (IMAG) held an IMAG Futures Meeting 
on December 15-16, 2009 on the National Institutes of Health (NIH) Campus at the 
Natcher Conference Center. This meeting was open to the public to share in the 
discussion of a working group who deliberated on the impact of biomedical, biological 
and behavioral modeling.  This meeting was an opportunity to assess the extent to which 
computational modeling has succeeded to date in making a difference in the broader 
biomedical research endeavor, and to discuss progress in the field in the context of 
current challenges and opportunities for biomedical, biological and behavioral modeling. 
 
While presenters and discussants were not charged with reaching consensus or making 
specific recommendations, a picture emerged from the discussions of accelerating 
progress and expanding opportunity for computational modeling, especially multi-scale 
modeling, to become an integral and essential component of training, research and 
translation in a growing number of biomedical specialities, much as it already has in 
fields such as physics and engineering. In particular given the availability of new data, 
tools and methods, the potential for more sophisticated and highly integrated models, that 
span a wider range of scales of biological organization, and that apply to clinical practice 
and healthcare, is greater now than at any time in the past. 
 
In some research fields such as computational neuroscience and cardiovascular 
biophysics, modeling has become increasingly integrated with experimental research. 
However, challenges remain. In many branches of biomedical science, familiarity with 
and acceptance of computational modeling remains the exception rather than the norm. 
There is still a pressing need for more scientists with the interdisciplinary training to 
carry out this kind of research.  
 
Efforts could be made to achieve closer interactions and better communication between 
researchers applying modeling to different biomedical disciplines. This could accelerate 
progress in biomedical modeling, open new fields of biomedicine to modeling and lead to 
more comprehensive, integrated and reliable models. Application areas with particular 
promise include drug discovery, predictive analyses of cell signaling pathways and 
regulatory networks, patient-specific modeling for diagnosis and treatment planning 
especially for surgery and interventional procedures, and clinical trial design.  
 
Some common conclusions from the discussions about modeling at different scales were: 

o Modeling has been successful in almost all biomedical domains and scales; 
o Modeling will be increasingly necessary as the complexity of biomedical data 

and conceptual hypotheses grow; 
o Modeling has the potential to accelerate translation from basic science to 

clinical medicine; 
o Modeling can efficiently drive experimentation, data acquisition and 

technology development; and 
o Modeling promotes interdisciplinary research and training. 
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I. Introduction 
In April of 2003 the Interagency Modeling and Analysis Group (IMAG) was formed, 
starting from a working group, comprised of program staff from nine Institutes of the 
National Institutes of Health (NIH) and three directorates of the National Science 
Foundation (NSF).  IMAG is now comprised of program directors from nine government 
agencies in the U.S. and Canada, including the National Institutes of Health (NIH), the 
National Science Foundation (NSF), Department of Energy (DOE), Department of 
Defense (DOD), the United States Department of Agriculture (USDA), the Canadian 
federal research network for Mathematics of Information Technology and Complex 
Systems (MITACS), the National Aeronautics and Space Administration (NASA), the 
United States Department of Veterans Administration (USDVA), and the Food and Drug 
Administration (FDA, joined January 2010).  
 
The purpose of IMAG is to bring together program officers who have a shared interest in 
supporting modeling and analysis methods in biomedical, biological and behavioral 
systems. IMAG has promoted and supported a wide variety of modeling over the past six 
years, notably the multi-scale modeling (MSM) initiative, which was originally a multi-
agency FOA and continued on by different IMAG agencies through separate FOAs.   
 
The IMAG/MSM Consortium was started in 2006 with the convening of the initial group 
of MSM grantees from the Interagency Opportunities in Multi-Scale Modeling in 
Biomedical, Biological, and Behavioral Systems Solicitation. 1 The Consortium has 
grown to include principal investigators of other projects funded by other initiatives, but 
also relevant to the Consortium.  All Consortium activities are publicly available on the 
IMAG Wiki.2   
 
As the IMAG/MSM Consortium has matured, IMAG is now also exploring population 
models that are based primarily on statistical data and methods and the possibilities for 
leveraging these models with mechanistic models developed by other MSM participants. 
Furthermore, there is a swelling interest from the international community in 
coordinating national and regional efforts for multiscale, “Physiome” modeling3.  In 
order to sustain and accelerate progress in biomedical modeling, it is therefore important 
to consider how models can indeed impact broader communities.   
 
On December 15-16, 2009 IMAG held the first IMAG Futures Meeting - The Impact of 
Modeling on Biomedical Research.  This meeting was an opportunity to assess to what 
extent computational modeling has succeeded or failed in making a difference in the 
broader biomedical research endeavor, and to discuss these issues in the context of 
current challenges and opportunities for biomedical, biological and behavioral modeling. 
This was a brainstorming meeting that included government and community leaders, as 
well as attendees interacting via worldwide videocast.   
 
                                                 
1 http://www.nsf.gov/pubs/2004/nsf04607/nsf04607.htm 
2 www.imagwiki.org/mediawiki 
3 Hunter and Borg. Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 
(2003) vol. 4 (3) pp. 237-43 
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I.1 Contributors 
The meeting discussions were organized according to modeling activities related to each 
of five major levels of organization in the biological hierarchy: population modeling; 
whole body modeling; cell-tissue-organ modeling; pathways and networks modeling; and 
atomic and molecular modeling. This report is a compilation of thoughts from 
participants of the five speaker panels representing these five categories of modeling and 
discussants who provided comments and feedback in person and via the Internet.  The 
primary authors of this report is Dr. Andrew McCulloch from University of California 
San Diego, and the other panel chairs (introduced below) – Dr. Sylvia Plevritis, Dr. 
Donald Bolser, Dr. Joel Stiles, and Dr. Vijay Pande.   
 
Participants were encouraged to reflect on their own fields and expertise and call 
attention to issues that are unique to each level of modeling (scale) as well as issues that 
may span across scales.  The archived videocast, all meeting presentations, reports and an 
open post-meeting public commentary period are available on the IMAG wiki 
(http://www.imagwiki.org/mediawiki/index.php?title=IFM_Announcement).  
 
I.1.1 Population Modeling 

• Dr. David Eddy is the Medical Director and Founder of Archimedes, a company that 
mathematically models medicine. Prior to founding Archimedes, Dr. Eddy was 
Professor of Engineering and Medicine at Stanford, and the J. Alexander McMahon 
Professor of Health Policy and Management at Duke University.   

• Dr. Bryan Grenfell is Alumni Professor of Biology at Penn State University, where he 
works in the Center for Infectious Disease Dynamics using theoretical models and 
empirical data to study the population biology of infectious diseases. 

• Dr. Sylvia Plevritis (Chair) is Associate Professor of Radiology at Stanford 
University, where her research program focuses on computational modeling of cancer 
biology and cancer outcomes. 

• Dr. Paolo Vicini is a Research Fellow at Pfizer Global R&D in La Jolla, CA. He has a 
background in bioengineering and works on translational research in 
pharmacokinetics, dynamics, and metabolism. 
 

I.1.2 Whole Body Modeling 

• Dr. Donald Bolser (Chair) is Professor of Physiological Sciences at the University of 
Florida, where his laboratory studies respiratory physiology and uses computational 
models to investigate cough mechanisms. 

• Dr. Marco Viceconti from Instituto Ortopedico Rizzoli di Bologna develops multi-
scale computational models for applications in human orthopedics and trauma. He is 
actively involved in the leadership of the European Commission-funded Virtual 
Physiological Human4 (VPH) Project (see Section VII: International Activities). 

                                                 
4 The virtual physiological human-A European initiative for in silico human modeling. Viceconti M, 
Clapworthy G, Van Sint Jan S. J Physiol Sci. 2008 Dec:58(7):441-446. 
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• Dr. Yoram Vodovotz is Director of the Center for Inflammation and Regenerative 
Modeling at the University of Pittsburgh, where he studies systems modeling of 
inflammation. 

I.1.3 Cell, Tissue and Organ Modeling 

• Dr. Andrew McCulloch (Chair) is a Professor of Bioengineering at University of 
California San Diego who works on multi-scale studies of cardiac biology and 
disease. 

• Dr. Jeff Smith is a Senior Investigator at the NIH in the National Institute of 
Neurological Disorders and Stroke, where he is studying the functional and 
computational properties of oscillatory motor networks in the mammalian brainstem 
and spinal cord. 

• Dr. Shlomo Ta’asan from Carnegie Mellon University is developing multi-scale 
models for immunology and infectious diseases including influenza and tuberculosis. 

• Dr. Vito Quaranta, a cancer biologist at Vanderbilt University, is applying systems 
biology approaches to understanding mechanisms of cancer cell invasion and 
metastasis. 

 
I.1.4 Pathways and Networks Modeling 

• Dr. Ronald Germain from the Laboratory of Immunology and the Program in 
Systems Immunology and Infectious Disease Modeling at the National Institute of 
Allergy and Infectious Disease, part of the NIH, uses mechanistic cell systems models 
to investigate questions in immunology. 

• Dr. Timothy Kinsella is a radiation oncologist at the Case Western School of 
Medicine and University Hospitals of Cleveland. 

• Dr. Joel Stiles (Chair) is Director of the Center for Quantitative Biological 
Simulation at the Pittsburgh Supercomputing Center with research interests in 
synaptic and cellular microphysiology. 

 
I.1.5 Atomic and Molecular Modeling 

• Dr. Vijay Pande (Chair) is Associate Professor of Chemistry, Structural Biology and 
Computer Science at Stanford University and an investigator of the Physics-based 
Simulation of Biological Structures (SIMBIOS) National Center for Biomedical 
Computing (NCBC). His laboratory develops computational models and tools for 
molecular simulation of protein folding and small molecule drug design. 

• Dr. Abby Parrill is Professor and Chair of Chemistry at the University of Memphis, 
where her research group works on computational structural biology and rational 
ligand design. 

• Dr. Linda Petzold is Professor of Computer Science and Mechanical Engineering at 
the University of California Santa Barbara. Her research includes the development 
and analysis of multiscale simulation methods for biochemical reactions and 
networks. 

• Dr. Tamar Schlick is Professor of Chemistry, Mathematics, and Computer Science 
and a member of the Courant Institute of Mathematical Sciences at New York 
University. Her group is developing molecular modeling, bioinformatics, and 
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mathematical methods to study DNA repair and fidelity mechanisms, chromatin 
folding, and RNA structure and function. 
 

I.1.6 Other Speakers 

• Dr. Peter Hunter is a Bioengineer who directs the Auckland Bioengineering Institute 
at the University of Auckland and leads the international Physiome project under the 
auspices of the International Union of Physiological Sciences (IUPS). 

• Dr. Tina Morrison is a Medical Device Fellow in the Division of Cardiovascular 
Devices at the Food and Drug Administration (FDA). 

 
I. 2 Meeting Charge 
In the context of each of the five scale levels of the biological hierarchy, participants 
were asked to address the following four major charge topics:  

 How modeling has impacted various research fields (success stories and 
mechanisms)? Is it the onus on modelers to prove that their models are useful to 
someone else?  

 To what extent has the broader research communities accepted modeling as a critical 
tool for driving research or policy (what has worked and what hasn't worked)?  

 What are the major challenges to overcome (how do we get there)?  

 In what ways can modeling further impact the broader research communities (how far 
can we go)?  

 
These questions were also to be addressed in the context of the following specific issues:  

(1) The current perception of modeling in the biomedical and clinical research 
community, what needs to change to encourage more acceptance?  

(2) Future biomedical and clinical applications for models, based on current success 
stories, things that couldn't be solved w/o models, time to cure – e.g. comparative 
effectiveness research. 

(3) Future directions for model development – e.g. explicit models for predictions versus 
implicit or embedded models in technology, enabling technologies and infrastructures 
for modeling. 

(4) Model validation and the availability of appropriate data. 

(5) Uncertainty quantification and predictability of outcomes. 

(6) The current state of model development – e.g. community-developed versus custom-
made models. 

(7) The current state of peer review for modeling research – e.g. changes that need to 
occur in the community. 

This report summarizes the presentation and discussion related to modeling at each of the 
five biological scales under subheadings reflecting the four charge topics: Impact of 
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Modeling through 2009; Acceptance of Modeling as a Driving Tool; Major Challenges; 
and Opportunities for Modeling to Further Impact Research and Policy. 

Many of the specific questions (1) through (7) as well as other common themes arose in 
discussion of more than one of the charge topics. We have made an effort to avoid 
unnecessary duplication while capturing the spirit of the presentations and exchanges. 
 
 
II. Population Modeling 
 
II.1 Impact of Modeling through 2009 
Computational modeling at the population level has had an impact in large part by 
influencing health care coverage decisions and the development of clinical guidelines.  
 
David Eddy described many successes of the “Archimedes” model.  Archimedes is a 
population-level model built up from underlying physiological pathways. Its uses range 
from policies (e.g., guidelines, performance measurement, incentives, priority setting, 
strategic goals, cost and cost-effectiveness analysis, comparative effectiveness analysis) 
to research planning (e.g. drug portfolio analysis, clinical trial design and production). 
Currently, Archimedes is being used by pharmaceutical companies, voluntary health 
organizations (e.g., American Heart Association, American Diabetes Association, 
American Cancer Society), government agencies (e.g., CDC), policy making 
organizations (e.g., National Committee for Quality Assurance (NCQA)), insurers, and 
health plans. 
  
Sylvia Plevritis indicated that statistical models have made a larger impact at the 
population level than mechanistic (or phenomological models). For instance, statistically-
derived tools for risk assessment are routinely used in clinical practice.  Examples of such 
tools for assessing the risk of developing breast cancer include the Gail and Claus 
models.  Similar tools used in genetic counseling include BRCAPro. These models often 
rely on longitudinal data from large epidemiological studies such as the Nurse’s Health 
Study, Carotene and Retinol Efficacy Trial (CARET), the Women's Health Initiative 
(WHI), Physician’s Study, and extensive family registries such as the Utah Family 
Registry and the Family Breast Registry.  Dr. Plevritis said that mechanistic models at the 
population level have had less impact than statistical models, but she believes the trend is 
changing, particularly in areas where traditional statistical approaches are not sufficient in 
integrating complex datasets. She has applied mechanistic models at the population level 
to influence cancer screening programs among high risk cohorts who are understudied 
with more traditional methods. Dr. Plevritis is also part of the NCI Cancer Intervention 
and Surveillance Network (CISNET), which is a consortium of modelers focused on 
cancer screening and prevention policies. Collectively, the CISNET models have targeted 
numerous policy decisions on screening for breast cancer, colon cancer, lung cancer and 
prostate cancer (cisnet.cancer.gov). One recent example is the updated U.S. Preventive 
Services Task Force (USPSTF) recommendations on breast cancer screening, which were 
derived, in part, from the results of CISNET screening models. CISNET has also worked 
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with the USPSTF regarding recommendations for colon cancer screening, in addition to a 
variety of other organizations focused on cancer control. 
 
Bryan Grenfell described a substantial body of work demonstrating the value of modeling 
nonlinear epidemic dynamics for controlling infectious disease. He discussed the role of 
modeling in the HIV epidemic, Bovine Spongiform Encephalopathy (BSE) / Creutzfeldt-
Jakob Disease (CJD), the UK Foot and Mouth epidemic of 2001, antibody resistance, 
assessing threats and possible control of small pox, and pandemic influenza, including the 
current H1N1 pandemic. He described the “anatomy” of an epidemic with a model that 
captures the essence of an epidemiological clock moving populations from susceptible to 
infected and ultimately recovered states. He gave an example of modeling the occurrence 
rate of measles in the UK, demonstrating how it is impacted by baby booms and 
schooling. Dr. Grenfell suggested that the concepts of transmission dynamics such as 
reproductive ratios are now influential in shaping quite a lot of research, citing the 
NSF/Fogarty Ecology of Infectious Disease and NIGMS/Midas Programs.  

Paolo Vicini discussed the role of modeling in the pharmaceutical industry, with a focus 
on pharmacokinetic and pharmacodynamic (PK-PD) models. While not without 
challenges5, modeling and simulation have had a significant impact on drug 
development6, especially in the clinical setting. With the advent of the discipline of 
pharmacometrics7, the idea of “model-based drug development8” has started to take 
hold9. Pharmacometrics builds on advances made possible by the pharmacokinetic (what 
the body does to the drug) and pharmacodynamic (what the drug does to the body) 
frameworks10 commonly used to map therapeutic dose to effect through individual 
exposure. Model-based drug development has been facilitated by the ready availability of 
a variety of computer-intensive modeling tools11 spanning the development process. 
Specifically relevant to the population level, nonlinear mixed effects modeling12 allows 

                                                 
5 Challenges in the transition to model-based development. Grasela TH, Fiedler-Kelly J, Walawander CA, 
Owen JS, Cirincione BB, Reitz KE, Ludwig EA, Passarell JA, Dement CW. AAPS J. 2005 Oct 
5;7(2):E488-95. 
6 Pharmacokinetics/Pharmacodynamics and the stages of drug development: role of modeling and 
simulation. Chien JY, Friedrich S, Heathman MA, de Alwis DP, Sinha V. AAPS J. 2005 Oct 7;7(3):E544-
59. 
7 Pharmacometrics: a multidisciplinary field to facilitate critical thinking in drug development and 
translational research settings. Barrett JS, Fossler MJ, Cadieu KD, Gastonguay MR. J Clin Pharmacol. 
2008 May;48(5):632-49. 
8 Model-based drug development. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, 
Milligan PA, Corrigan BW, Lockwood PA, Marshall SA, Benincosa LJ, Tensfeldt TG, Parivar K, Amantea 
M, Glue P, Koide H, Miller R. Clin Pharmacol Ther. 2007 Jul;82(1):21-32. 
9 Impact of pharmacometrics on drug approval and labeling decisions: a survey of 42 new drug 
applications. Bhattaram VA, Booth BP, Ramchandani RP, Beasley BN, Wang Y, Tandon V, Duan JZ, 
Baweja RK, Marroum PJ, Uppoor RS, Rahman NA, Sahajwalla CG, Powell JR, Mehta MU, Gobburu JV. 
AAPS J. 2005 Oct 7;7(3):E503-12. 
10 Pharmacokinetic/pharmacodynamic modeling in drug development. Sheiner LB, Steimer JL. Annu Rev 
Pharmacol Toxicol. 2000;40:67-95. 
11 Simulation of clinical trials. Holford NH, Kimko HC, Monteleone JP, Peck CC. Annu Rev Pharmacol 
Toxicol. 2000;40:209-34. 
12 Population pharmacokinetics/dynamics. Sheiner LB, Ludden TM. Annu Rev Pharmacol Toxicol. 
1992;32:185-209. 
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pharmacometricians to account explicitly for between-subject variability, both when 
analyzing data (thus obtaining a rigorous estimate of between-patient unexplained 
variation) and when simulating potential clinical design scenarios.  

II.2 Acceptance of Modeling as a Driving Tool 
David Eddy made the point that the acceptance of modeling varies widely.  At one end of 
the spectrum are those who take modeling very seriously, and when the model produces a 
counterintuitive result, they work hard to learn from the model. At the other end of the 
spectrum are those who will accept or reject the model based on whether or not its 
conclusions confirm or conflict with their prior conceptions.  He said that, to some extent, 
the differences are due to differences in the available data. Some disease categories such 
as heart, diabetes, HIV, and cancer screening have received a great deal of attention in 
modeling, whereas other disease areas or organs have received very little. Disease 
categories such as cancer have excellent registries for incidence and staging. Other 
diseases have very poor information and fewer clinical trials. There are some disease 
categories, mental health is a good example, where definitions may be still too subjective 
or variably applied to enable the collection of quantitative data needed to build and 
validate unambiguous models. 
 
Sylvia Plevritis spoke about the value of a modeling consortium, which is an idea that has 
been accepted at the NCI with the creation of CISNET, the Cancer Intervention and 
Surveillance Network13, mentioned earlier.  CISNET is a consortium of investigators 
from different institutions who develop and apply models to understand the impact of a 
variety of interventions on population trends in cancer incidence and mortality.  In 
CISNET, multiple research teams work separately, but in parallel, to tackle common 
questions and compare their model results.  If an important finding is robust to a variety 
of modeling assumptions made by the different modeling teams, then that finding is often 
accepted as robust and more likely to have an impact.  
 
Bryan Grenfell indicated that modeling still has a long way to go in being accepted as a 
useful tool in many epidemiological studies. He claimed that the role of modeling in 
wildlife disease ecology is more developed than human disease epidemiology. He stated 
that the acceptance of modeling involves a tight integration with data and biological 
expertise, publication of results (ideally parallel work by several groups) and efforts to 
engage the people who shape policy. 
 
Paolo Vinci indicated that there is increased interest in using computer-intensive tools in 
decision making14 in a variety15 of settings16 in the pharmaceutical research community, 

                                                 
13 http://cancer.cisnet.gov 
14 How modeling and simulation have enhanced decision making in new drug development. Miller R, Ewy 
W, Corrigan BW, Ouellet D, Hermann D, Kowalski KG, Lockwood P, Koup JR, Donevan S, El-Kattan A, 
Li CS, Werth JL, Feltner DE, Lalonde RL. J Pharmacokinet Pharmacodyn. 2005 Apr;32(2):185-97. 
15 Utilisation of pharmacokinetic-pharmacodynamic modelling and simulation in regulatory decision-
making. Gobburu JV, Marroum PJ. Clin Pharmacokinet. 2001;40(12):883-92. 
16 Pharmacometrics at FDA: evolution and impact on decisions. Powell JR, Gobburu JV. Clin Pharmacol 
Ther. 2007 Jul;82(1):97-102. 
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where modeling has manifested as a new discipline of pharmacometrics. Dr. Vicini also 
pointed out that model validation and uncertainty quantification are fundamental 
components for model acceptance. Widely appreciated criteria for model testing and 
ultimately acceptance have been proposed, and while their practical application requires 
appropriate data, their theoretical and methodological basis has been well worked out in 
this context. He provided historical reviews that this audience may find useful by way of 
background17. At the population scale, this has facilitated the emergence of approaches to 
computationally-intensive design of clinical trials18, with the intention of increasing the 
probability of successful outcomes.  
 
II.3 Major Challenges 
Dr. Eddy emphasized the value added by models in many other fields of human 
endeavor, such as energy, transportation, construction, space, manufacturing, finance and 
so forth. He believes that medicine is still lagging far behind. While it is true that 
biological complexity and variation present special problems, there exist good 
mathematical and statistical techniques for addressing these.  In addition, the problems in 
healthcare are not necessarily more difficult than, for example, the problems physicists 
face when they try to measure the speed at which the universe is expanding or the 
existence of black holes. Dr. Eddy went on to state that to overcome skepticism about 
modeling in medicine, models need to be well formalized so that an inquirer can 
understand the model if s/he invests the time and effort to do so. That said, the onus is, 
and should be, on modelers to prove the value and validity of the model by making it 
transparent to the user. Toward this goal, methodological advances are needed in the area 
of assessing model robustness, uncertainty and approaches to model validity, so that even 
a non-mathematician can trust the model. Ideally, there should be a standard set of 
criteria for establishing the utility and validity of a model.  

Dr. Plevritis argued that the broader research community needs to understand that a 
model does not need to be right to be useful. A model simply needs to synthesize our 
current knowledge and make predictions that can be tested.  If the predictions are wrong, 
unfortunately the model is often disregarded  even if in such casethe model can be used to 
trace the deficiencies in our knowledge. This type of analysis can guide investments for 
future research. Dr. Plevritis also made the point that biomedical model building requires 
expertise from multiple disciplines, at the very least two: the first relates to the 
biomedical sciences, and the second relates to technical aspects of model building, 
parameter estimation and model validation. These disciplines are taught in different 
schools at most universities, with different cultures. Modelers who work to bridge these 
domains have to train within both disciplines, albeit to varying degrees. They need to 
determine what to communicate in each discipline. They need to believe that there will be 

                                                 
17 Non-linear mixed effects modeling - from methodology and software development to driving 
implementation in drug development science. Pillai GC, Mentré F, Steimer JL. J Pharmacokinet 
Pharmacodyn. 2005 Apr;32(2):161-83. 
18 Pharmacometrics and the transition to model-based development. Grasela TH, Dement CW, Kolterman 
OG, Fineman MS, Grasela DM, Honig P, Antal EJ, Bjornsson TD, Loh E. Clin Pharmacol Ther. 2007 
Aug;82(2):137-42. 
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career opportunities in academia and industry that will recognize value and apply their 
unique training.  

Dr. Vinci argued that the broad acceptance within industry has not yet been matched by 
an equal level of acceptance in academia. Acceptance may increase if these tools are 
deployed more broadly within academic research communities and especially if they are 
used to design experiments. In addition, there is a shortage of well-trained PK-PD and 
pharmacometric experts. PK-PD modeling (both at the preclinical and clinical scale) 
requires faculty with a wide set of skills and research areas, including informatics, 
engineering, statistics and pharmacology. There is some uncertainty as to where this kind 
of “eclectic professional” will eventually come from (the “pharmacometricians of the 
future”19). Another challenge is certainly linked to model sharing and peer review, but 
this is not new20. Modelers should also do a better job at demystifying their science and 
make it more accessible to biologists and clinicians, by focusing on the most biologically 
relevant messages at the expense of technical details. 
 
Brian Grenfell suggested that models need to demonstrate a greater capability to integrate 
diverse and disparate data. In the case of epidemics, models can do more to integrate the 
epidemiological and evolutionary dynamics of pathogens. Dr. Grenfell spoke about how 
models need to capture “several voices.” He argued that modeling disciplines in 
biomedicine are still too siloed, especially across integrative scales. Dr. Grenfell made 
the point that to bring on more methodological advances, theorists need to be fully 
integrated into the research, which requires overcoming communication barriers between 
the modelers and the domain experts. He believes that theorists still are not always 
integrated closely enough with empirical researchers (as physicists or engineers would 
be). This can cause obvious limitations in communicating and disseminating results, as 
well as limiting realism of models and opportunities for model validation if key data sets 
are neglected.  More quantitative training of empirical workers and policy makers would 
obviously help here, as well as in developing a crucial feel for what’s going on “under the 
hood” of models. 
 
II.4 Opportunities for Modeling to Further Impact Research and Policy 
Dr. Eddy believes that for modeling to advance health policy, clinical guidelines and drug 
development, the models need to capture more fully clinical and biological realism, 
including the effects of population diversity. In epidemiological studies, models need to 
capture and utilize more observational data. The data should be person-specific, 
longitudinal, and contain the important demographic, physiological, intervention, and 
outcome variables. Paradoxically, some believe that only when models prove to be 
valuable in integrating data, then investments will be made to collect, archive and 
maintain such data. However, Dr. Eddy claimed the key is the collection and availability 
of data. The first step should be to make certain that we have clear reproducible 
                                                 
19 Where will the pharmacometricians of the future come from? Panel Discussion. American Conference on 
Pharmacometrics, October 4-7, 2009, The Grand Pequot at Foxwoods Resort, Mashantucket, CT. 
http://www.go-acop.org/sites/all/assets/5_Monday_PM%20of%20the%20Future.doc  
20 A retrospective on the modeling methodology forum. The review process for modeling papers: a 
revisionist's experiences and perspectives. DiStefano JJ 3rd. Am J Physiol. 1994 Oct;267(4 Pt 1):E485-8. 
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definitions of the conditions, any biomarkers, signs and symptoms, and outcomes. The 
second is to ensure that we have data on the incidence and progression of the conditions 
as a function of a variety of patient characteristics and risk factors. The third is to ensure 
that we have clinical trials for the effects of major treatments and that we have clinical 
data on the accuracies of various tests. With the existence of these data, the fourth 
concern becomes their availability to researchers. Currently, a great deal of data are 
collected but kept private (not just by pharmaceutical companies but by academic groups 
or the trialists themselves). Creating a pool of data (after a suitable time to enable 
researchers themselves to publish their initial round of reports) would greatly advance the 
state of modeling. 
 
Sylvia Plevritis stated that modeling has the potential to play a greater role in “Integrative 
Sciences.” Modeling can provide more of an integrated perspective of existing data 
which may lead to new insights and potentially avoid unnecessary, redundant and 
sometimes harmful studies and experiments. In addition, models can provide the 
mechanism to link between a variety of biological and clinical scales. For example, in 
many population models there are “submodels” (or assumptions) about disease 
progression. When simulating known trials with underlying disease progression models, 
inferences can be made about important biological questions such as the rate of cancer 
progression, the evidence (or lack of evidence) that cancer progresses from specific 
precursor lesions, and whether or not it does so in clinical stages or cellular grade. 
Answers to these questions can be linked to the molecular heterogeneity of the disease.  

 
Bryan Grenfell spoke about the necessity to integrate epidemiological and evolutionary 
dynamics of pathogens (so called ‘phylodynamics’).  Progress has been made recently 
(particularly for influenza – and the current pandemic will generate more, hopefully).  
However, more progress is needed, both in general and for specific infections.  Part of the 
difficulty is because we really need to have the right data and model structures to 
understand cross-scale dynamics (molecular level to in-host to population) before we can 
decide which simplifications are reasonable. 
 
Paolo Vinci stated that the possibilities brought forth by computer-based design of 
experiments in the context of therapeutic development do not need to stop at clinical 
trials. He believes that there is a chance to impact basic and translational science and 
academic research, which requires the functional integration of many levels of expertise. 
In many ways, model-based design and hypothesis testing allow greater generality and 
flexibility compared with more traditional statistical analysis tools. The onus is on the 
biologist and clinician to work with a modeling expert to translate their hypothesis in 
terms that are amenable to computer modeling. This requires the willingness to formulate 
mechanisms and gather informative experimental data that would shed light on key 
aspects of pathways, models and especially (again most relevant to the population scale) 
biological variability.  

 
 

III. Whole Body Modeling 
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III.1 Impact of Modeling through 2009 
Marco Viceconti gave several examples of the impact of whole body modeling such as 
prediction of the risk of bone fracture in patients. Whole body models are informed with 
a combination of patient-specific and population  data?. Predictions of this class of 
models include muscle forces that a patient might exert in various regions of the skeleton 
during different physiological activities. The goal is first to identify boundary conditions 
for the organ and then use tissue level models to predict regional stress and strain 
distributions. This information can then be used to guide rehabilitation efforts.  
 
Another example that Dr. Viceconti illustrated, this time from cardiovascular medicine, 
was prediction of the risk of rupture of an aneurysm. Again, boundary conditions are 
predicted and applied to a local vascular model from which risk of aneurism rupture can 
be estimated.   
 
At Dr. Viceconti’s institution, whole body modeling is being used in clinical practice in 
pediatric oncology. Some osteosarcomas require reconstruction of massive portions of 
the skeleton; however prosthetics are not possible at this time due to high growth rates of 
children. Modeling is used to set a rehabilitation strategy and is especially useful when 
clinical experience is limited due to a low number of patient admissions for this problem.  
 
A recent example of the impact of whole body computational modeling is the approval by 
the FDA of an in silico model of diabetes for use in preclinical testing by Juvenile 
Diabetes Research Foundation Artificial Pancreas Consortium sites21. The goal of the 
artificial pancreas project is to allow blood glucose levels to be maintained at normal 
levels without significant patient involvement. Modeling is likely to be an important 
element in the development and testing of algorithms that control communication 
between glucose pumps and monitors.  
 
III.2 Acceptance of Modeling as a Driving Tool 
Donald Bolser cited experiences from his lab on the use of computational models to study 
cough mechanisms to illustrate the challenges facing modelers in getting their results 
accepted by the experimental and clinical communities. He began his talk with a video-
fluoroscopic record of disordered swallowing in a patient with amyotropic lateral 
sclerosis and noted how complex the behavior of swallowing was, even in health. He 
went on to list several issues with how modeling is perceived by experimentalists and 
clinicians including: the notion that biological systems are too complex to be modeled; 
the limited communication between experimentalists and modelers; a limited 
understanding of what computational modeling can accomplish; and inertia that may 
impair acceptance of modeling as an important tool for understanding biological systems. 
 
Dr. Bolser presented an example of a complex model of the brainstem neural network 
that generates breathing and airway protective behaviors, such as cough22.There are so 
                                                 
21 www.artificialpancreas.com. 
22 Reconfiguration of the pontomedullary respiratory network: a computational modeling study with 
coordinated in vivo experiments. Rybak IA, O'Connor R, Ross A, Shevtsova NA, Nuding SC, Segers LS, 
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many elements and interconnections that it is difficult for experimentalists to appreciate 
the function of this network at the whole body scale. Dr. Bolser went on to suggest that 
computational modeling and simulation are necessary tools for investigating this system. 
 
Dr. Bolser shared his experiences investigating the complex version of the brainstem 
network model through simulation. He indicated that his enthusiasm for computational 
modeling reached a high level when simulations accurately predicted a novel 
physiological mechanism in the regulation of cough by the nervous system.  
 
He closed with suggestions for enhancing the enthusiasm of experimentalists and 
clinicians for computational modeling that centered on fostering not just exposure to 
modeling but hands-on experience. These suggestions included offering frequent 
workshops and incorporating computational modeling into training environments.   
 
III.3 Major Challenges 
Yoram Vodovotz described systems modeling of the whole body inflammatory response 
in mice. These efforts resulted in an approach that utilized an ensemble of models, each 
with different parameter values that could be queried.  
 
Dr. Vodovotz indicated that the focus in those models has been to find bottlenecks that 
are inhibiting translation of basic findings into clinical applications. Challenges include 
incorporation of mechanisms, methods, and other knowledge that arises from multiple 
scales, systems biology and computational approaches23. Translational bottlenecks can 
include clinical trials, efforts to improve diagnostics and device design with models. 
Simulations have to be validated at the clinical level and this goal requires that the 
models must be informed with data that are obtained from a clinical, as opposed to an 
experimental, setting. This information can be incorporated through the use of simulated 
clinical trials and the use of “virtual” patients.   
 
In one study, clinical trials were simulated and compared with actual trials. Simulations 
predicted that drug treatment was harmful to some patients, resulting in no net benefit. 
Modeling allowed a new simulated trial to be conducted with a larger numbers of patients 
in which the influence of age could also be predicted. The results indicated that 
increasing age results in a poorer prognosis and reduced response to the drug. The goal of 
this effort was to utilize data that were likely to be available from the clinical setting in 
order to improve a clinical outcome.  
 
A question was asked regarding conflict of interest and checks and balances that might 
prevent misuse of a model. Dr. Vodovotz responded that the models related to animal 
work are all published and that they try to work with agent based models. Making real 

                                                                                                                                                 
Shannon R, Dick TE, Dunin-Barkowski WL, Orem JM, Solomon IC, Morris KF, Lindsey BG. J 
Neurophysiol. 2008 Jul:586(17):4265-4282. 
23 Translational systems approaches to the biology of inflammation and healing. Vodovotz Y, Constantine 
G, Faeder J, Mi Q, Rubin J, Bartels J, Sarkar J, Squires RH, Okonkwo DO, Gerlach J, Zamora R, Luckhart 
S, Ermentrout B, An G. Immunopharmacol Immunotoxicol. 2010 Feb 22, PMID: 20170421.  
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progress in the use of clinical models is currently difficult without the level of resources 
that industry has available.  The proper use of models is important and careful records 
need to be kept of assumptions that go into a particular model and its effect on quality 
and efficiency of care.  
 
Another discussant stated that models built for public use can be subject to ongoing 
modifications as new information is generated and asked if this represented a feedback 
system. This can be positive as long as this sort of application is supported by the model. 
In such a situation, commercial interests, and/or academic credit can be a problem for 
modelers as they may not have the same sort of control as traditional bench or 
experimental scientists over how their model is applied.   
 
There was discussion of open source codes and how they are viewed. It was generally 
agreed that there can be significant advantages to open source licenses when they do not 
include constraints such as those of some “viral” or “copyleft” clauses. The discussion 
extended to the concept of open standards and formats. This process can be facilitated by 
setting up consistent models and data, which would assist others in developing their own 
models. 
 
III.4 Opportunities for Modeling to Further Impact Research and Policy 
One opportunity for whole-body modeling to impact research and policy may be in 
developing clinical work flows and standard operating procedures. Formal work flows 
are being developed for some conditions, such as osteoporosis, with the goal of being 
able to deal with many thousands of patients and to balance progressive invasiveness and 
cost related to risk of intervention. 
 
Several questions dealt with model detail and this led to a discussion of the use of multi-
scale models and how they might be linked across scales. An example of this idea is 
modeling biophysical properties of an aneurism and linking it to cellular models of the 
underlying pathobiology. Linkage of different models could be accomplished by 
identification of control points that are common.  
 
Dr. Viceconti responded to a question about hybrid models with a summary of the variety 
of factors that could contribute to prediction of how tissue responds to loads that included 
mechanical properties, protein expression, adaptation, and issues regarding how to link 
different molecular pathways.  
 
One questioner suggested that following individual patients that have been treated based 
on information provided by a model represents validation. This and another question led 
to an extensive discussion on validation, prediction, and problem solving. 

  
 
IV. Cell-Tissue-Organ Modeling 
IV.1 Impact of Modeling through 2009 
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Models that integrate from cell dynamics to three-dimensional heterogeneous organ scale 
function are now quite well established in several biomedical fields including 
cardiovascular, pulmonary, neuroscience, immunology, cancer biology, musculoskeletal 
and orthopedic research. Given that these scales bridge a key gap between bench biology 
and clinical medicine, we expect to see continued growth in the number and scope of 
translational applications of the multi-scale models in this category of clinical problems 
including patient-specific modeling for diagnosis and therapy planning. 
 
Shlomo Ta’asan summarized some lessons from historical examples of mathematical 
models that now serve as fundamental underpinnings of modern engineering, economics 
and other fields. However, widespread use of successful models and theories can also 
lead to dangerous overconfidence and increase the risk of their misuse. The current 
financial crisis, for example, has been attributed to over-reliance and misuse of financial 
models. In biomedicine, Dr. Ta’asan pointed to the Hodgkin and Huxley model24 of the 
nerve action potential and models of HIV viral replication and growth as examples of 
very widely used analyses. Jeff Smith noted that the Hodgkin-Huxley theory actually 
predicted the existence of ion channels that were not known at the time. This has 
ultimately led to the discovery of channelopathies. 
 
Peter Hunter agreed that biophysically and anatomically based cell-organ level modeling 
has probably had its greatest impact in orthopedics25 and cardiovascular applications26, 
but he added that it is now involved in nearly all areas of research on human physiology. 
For example, our understanding of how the transmission of force through the skeleton 
during locomotion depends on the inhomogeneous and anisotropic material properties of 
bone is a direct consequence of the application of continuum mechanics using finite 
element modeling to handle the complex bone anatomy. Similarly, we would have a very 
poor understanding of pressure and flow in the cardiovascular system without the benefit 
of solving the underlying physical conservation laws (in this case expressed as the 
Navier-Stokes equations for Newtonian fluids).  
 
Another example, pointed out by Dr. Hunter, is the analysis of stress and strain 
distributions in the myocardium throughout the cardiac cycle using large deformation 
elasticity theory and the inhomogeneous, anisotropic and nonlinear material properties of 
cardiac tissue. This has yielded a new understanding of how the ejection fraction that 
characterizes ventricular pump function depends specifically on tissue architecture.   
 
There are many other examples of computational modeling informing our basic 
understanding of physiological mechanisms and being incorporated into clinical 
diagnostic or therapeutic applications including: air flow, blood flow and tissue 
mechanics in the lungs; the electrical wave propagation of muscular excitation in the 
stomach and intestines; the analysis of normal and abnormal gait with musculo-skeletal 
                                                 
10 Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction 
and excitation in nerve. J Physiol 117:500-544. 
25 Blemker et al. Image-based musculoskeletal modeling: applications, advances, and future opportunities. J 
Magn Reson Imaging (2007) vol. 25 (2) pp. 441-51 
26 Smith et al. The Cardiac Physiome: at the heart of coupling models to measurement. Exp Physiol (2009) 
vol. 94 (5) pp. 469-71 
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models; tumor growth; transport processes in a wide variety of tissues; and adaptive 
tissue growth and remodeling in vascular aneurysms.   
 
IV.2 Acceptance of Modeling as a Driving Tool 

While biomedical research is not typically driven by predictive, mechanistic 
mathematical models, most hypothesis-driven research is actually guided by conceptual 
models. As biological data become increasingly complex, high content and high 
throughput, there is a rapidly growing need for systematic frameworks (models) to 
interpret them.  
 
Andrew McCulloch observed that, compared with even only five years ago, it is 
increasingly appreciated amongst experimental biomedical scientists, at least in the fields 
of cardiovascular biology and neuroscience, that such complexity needs to be handled 
systematically. 
 
For this reason, Dr. McCulloch and other panelists felt that the increased integration of 
modeling in biomedical science is inevitable. Increasingly, new structural and functional 
data are driving new models. There are now good examples of models driving data 
collection (e.g. the various activities of the Connectomics initiative27 and the Cell 
Centered Database28). While new data may be driving the development of new models, 
multi-scale models based on detailed structure and physical principles remain data-
limited, especially because of the lack of detailed physical properties to assign to physical 
structures at the cell, tissue and organ scale, structures that can now be reconstructed with 
unprecedented resolution.  
 
For the same reasons, modeling is also driving technology development (both software 
and hardware). Some of the National Centers for Biomedical Computing29 such as 
SIMBIOS30 at Stanford and MagNET31 at Columbia University as well as several NCRR 
sponsored  Biomedical Technology Research Centers32 are focused on developing and 
deploying high quality software for multi-scale modeling at the cell to organ levels. New 
techniques for imaging, segmenting, reconstructing and annotating three-dimensional 
anatomical structures are also being driven by the potential for large-scale models. 
However both software and hardware development are very expensive. 
 
There are good examples of broader fields where physically based multi-scale modeling 
is driving experimental research: The legacy of Hodgkin and Huxley (1952) has created a 
strong tradition of ionic modeling that provides a systematic means to interpret 
measurements in single cells and channels, to control for experimental artifacts (e.g. 
buffering properties of indicators), to reconstitute data from expression systems into 
                                                 
27 http://connectomes.org/ 
28 http://ccdb.ucsd.edu/ 
29 http://www.ncbcs.org/ 
30 http://simbios.stanford.edu/ 
31 http://magnet.c2b2.columbia.edu/ 
32http://www.ncrr.nih.gov/biomedical%5Ftechnology/biomedical%5Ftechnology%5Fresearch%5Fcenters/i
nformatics%5Fresources/ 
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whole cells in silico, and to integrate predictions from single channels or cells to the 
whole organ. Another example is in experimental biomechanics and mechanobiology 
where the framework of continuum mechanics has provided a means to relate 
measurements across scales and to infer cell, tissue and organ mechanical properties. 
Twenty years ago, the concept of inverse analyses to deduce tissue and organ properties 
from clinically accessible data in conjunction with models was treated with skepticism; 
today strain is a common output of clinical cardiac imaging systems, and inverse analysis 
(e.g. electrocardiographic imaging) is coming into clinical use. There are now excellent 
examples in orthopedic and vascular surgery of image driven modeling for patient 
diagnosis and procedure planning (e.g. the OpenSim and SimVascular projects at 
SIMBIOS), in addition to patient-specific modeling of ablation therapy for atrial 
fibrillation and cardiac resynchronization therapy for congestive heart failure.  During the 
discussion, it was pointed out that with the rise of patient-specific modeling, it will 
become important to be aware that model assumptions must reflect the patient population 
and the differences between distinct and diverse patient populations. 

Dr. Hunter pointed out that biophysically based mathematical modeling is accepted as the 
essential framework for quantitative analysis in all areas of biomedical engineering. 
Large sections of the biomedical science community, however, are still resistant to 
modeling. An important lesson from the US higher education system is that training for 
future biomedical researchers should include mathematical modeling closely integrated 
with experimental techniques at the undergraduate level (as occurs in the biomedical 
engineering programs). Discussants noted that there is interest in and enthusiasm for 
using multi-scale modeling as a driver for interdisciplinary research training (e.g. the 
HHMI-NIBIB Interfaces Graduate Training Program33). Institutes at the NIH are also 
sponsoring short courses in modeling. While training is effective for the long term, it also 
requires an interdisciplinary culture and standardized tools with well documented 
protocols and limitations. 
 
In modern post-genomic science, a key motivation for the broad community of 
biomedical scientists to accept modeling will be the need for tools that can enhance 
understanding of biological complexity, that will allow conceptual models to become 
more quantitative and that will provide a means to integrate large and heterogeneous data 
sets with legacy data and concepts. This is driving the development of data-driven 
models, especially in systems biology where comprehensive models of signaling or 
metabolic networks can become a defacto data archive. 
 
Finally, acceptance of models and their accessibility to the research community will 
require better tools and standards for modeling, standardized protocols and experimental 
instrumentation and techniques for improved data collection and analysis. 

 
IV.3 Major Challenges 
Confidence in model results relies on validation. Since it is not generally, if ever, possible 
to validate biomedical models in their entirety, validation involves quantitative 

                                                 
33 http://www.hhmi.org/grants/institutions/nibib.html 
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experimental confirmation of model results. Dr. Ta’asan pointed out that this can be very 
costly and time-consuming both because of the large number of possible model 
experiments that can be conducted, the need for quantitative measurement, and the 
confounding effects of biological and experimental variability on the interpretation of 
experimental results. In addition to having confidence in model results, the biomedical 
community also needs to see the utility of models to experimental science. Beyond the 
utility of models to reproduce known phenomena, models should also be able to predict 
new findings or mechanisms and generate new hypotheses. But the effective iteration of 
theory and experiment usually requires collaboration which in turn is driving the need for 
interdisciplinary training of a new cadre of scientists educated in both mathematical and 
computational modeling and experimental biology. 
 
In the discussion that followed Dr. Ta’asan’s remarks, the current limits on 
interdisciplinary collaboration were discussed. Dr. Ta’asan and some others felt that the 
effective iteration between model and experiment is currently most efficient when multi-
disciplinary investigators are working together in the same laboratory or team. This 
appears to be a function of the biomedical discipline or field. In some better established 
areas, interdisciplinary collaborations between experimental and computational labs are 
common, whereas in other fields they remain the exception.  Some discussants felt that 
young people are better equipped today to be trained in both modeling and biomedical 
science, while others felt that the availability of better mathematical and computational 
modeling tools for research and education is not yet enough in the biomedical areas to 
ensure a sound grounding in the fundamentals.  Regardless, it will be important for the 
success of new training programs, that institutions and peer reviewer processes create 
career paths that allow the graduates of new programs to succeed. 
 
Amongst the key challenges identified by Vito Quaranta was the problem of extending 
multi-scale models in time to the time courses of development, disease progression and 
aging, e.g. developing mechanistic models of cancer disease progression. This advance 
will help to make mathematical modeling more useful for closing the loop between 
“omics” data and clinical outcomes. For these complex problems, models remain 
conceptual rather than quantitative, yet conceptual models have been valuable for 
advancing understanding. If the conceptual models of specific system components can be 
formalized, then the opportunity arises to integrate these to predict more complex and 
chronic phenotypes. One class of analysis that may be particularly effective for this kind 
of modeling is agent-based models34 which can incorporate empirical rules as well as 
equations derived from theoretical principles. While model predictions are often wrong, 
they remain a valuable way for testing the consequences of common assumptions and 
hypotheses or investigating new hypotheses. 
 
A continuing challenge is the high cost and time required to engineer, develop and 
maintain high quality software. This is important because models and their results must 
be reliable, intuitive to investigators in the field and provide convenient ways to make use 
of diverse biomedical data needed to formulate models at these scales. For example, Dr. 
Quaranta pointed out that cancer models rely on data from pathologists that is typically 
                                                 
34 Zhang et al. Multiscale agent-based cancer modeling. J Math Biol (2009) vol. 58 (4-5) pp. 545-59 
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not coded for machines. Existing software environments like Neuron, Genesis, 
SimVascular and Simmune are helping to encourage the entry of biologists and 
biomedical scientists to modeling. 
 
There remains a large unmet need for well-curated databases of heterogeneous, multi-
scale, structural, functional, cellular, tissue and organ physiological data. Although there 
are large amounts of biological data at the molecular component level, multi-scale 
modelers working at the cell to organ scale are relatively starved for data especially at the 
critical meso-scales between macromolecule and single cell and between single cell and 
tissues. To help bring the quantitative and predictive power of the mathematical sciences 
into the biological sciences, and to take advantage of an engineering approach to 
biological materials and a more systematic approach to the knowledge management of 
multi-scale physiological data, it is essential that the research community adopt common 
standards.  Some of these are being developed with the VPH-Physiome Project but much 
more effort is needed on data standards. Discussants also emphasized the importance of 
collaboration and training in these data warehousing efforts. 
 
 
In Dr. Hunter’s view one of the major challenges is a sociological one: how do we 
encourage more bioengineering, mathematics and computer science researchers to 
contribute to international open source projects rather than reinventing the wheel over 
and over with new software projects? Progress would be much faster with a more 
coordinated effort and there is certainly no shortage of challenging problems to keep the 
bioengineers, computer scientists and applied mathematicians busy without developing 
completely new software tools. The other major challenge mentioned is how to 
encourage wider uptake of modeling by biomedical scientists and, as suggested above, 
Dr. Hunter feels the answer to this lies in education.    
 
 
IV.4 Opportunities for Modeling to Further Impact Research and Policy 

Jeff Smith made the case persuasively that increasing impact of modeling at all scales is 
inevitable. This is largely because biological dynamics are complex and frequently defy 
intuition and predictability. The goal of multi-scale models of cellular dynamics is to 
quantify and visualize physiology in four dimensions to aid in understanding, hypothesis 
testing and experimental study design.  
 
Feedback, feed-forward, stability, and instability are all concepts from control theory that 
computational modeling has introduced to biology. We expect to see these systems level 
concepts become more commonplace as biologists have access to models as tools for 
investigation of complex phenotypes. Indeed the field of computational neuroscience, 
which is truly multi-scale, has emerged because the brain computes. While this field is 
still in its formative stage, models are already extending to processes such as neural 
plasticity, and there is already a high degree of acceptance of computational neuroscience 
as an integral subdiscipline. A continuing influx of mathematicians, computer scientists, 
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bioengineers and others trained in modeling into the field of neuroscience has been 
accepted and widely encouraged. 
 
Interdisciplinary programs and multi-scale modeling are influencing the way that 
neuroscience is being undertaken. For example, projects like the Biomedical Informatics 
Research network (BIRN) and the Connectomics Initiative, which aims to map entire 
brains at synapse resolution, will be generating terabytes of data per day, driven by the 
capabilities and requirements of computational models. The Blue Brain Project is a 
similar example for large-scale cortical models. 
 
This is not unique to the nervous system. Spatial organization is critical to all aspects of 
physiology and enormously complicates systems biology. This is where multi-scale 
modeling is especially important. The IUPS Physiome Project35 described by Dr. Hunter 
illustrates similar approaches especially for the heart, lungs, kidney, and musculoskeletal 
systems. 
 
Indeed, the extent of the parallel progress within specific biomedical disciplines drew the 
attention of many discussants to the comparative lack of cross-fertilization between fields 
such as computational neuroscience, systems biology and physiome research. This 
probably reflects the reliance of modelers on data specific to their biological system of 
interest and the priority of modelers to make their research relevant to the larger 
community of experimental investigators. However, it also suggests an opportunity for 
the future to expand opportunities for multi-scale modeling groups studying different 
systems to interact and share experiences and technologies. 
 
Several discussants highlighted the rapid growth and potential for applying cell-organ 
level multi-scale models to patient-specific diagnosis and planning of procedures, 
surgeries or medical therapy. Medical device design is another area where there remains 
very large potential for the application of multi-scale biomedical models. Since the 
industry is familiar with using models to analyze the performance of the devices, there is 
less resistance to the concept of modeling the target tissue or organ itself. Rather it is 
suitable software tools and data sources that are the limitation. During the special session, 
Dr. Tina Morrison addressed the activities and meetings of the FDA to encourage the 
development and validation of tools and data resources to support modeling in 
cardiovascular device design36. 

Dr. McCulloch suggested that one area where multi-scale modeling efforts at the cell-
tissue-organ scale have so far failed to have much translational impact is that of 
pharmaceutical discovery. But these efforts are viewed as premature rather than 
conceptually faulty. This prompted considerable discussion. Paolo Vicini suggested that 
the best examples of multi-scale models applied to drug discovery to date are mostly in 
bridging the gap from preclinical studies to human studies. There are examples where 
costly failures of drug trials could have been predicted by computational models and 
others where model results alone could have been sufficient for a drug company to 
                                                 
35 http://www.physiome.org.nz/ 
36 http://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm135284.htm 



 24

modify a clinical trial design. However, this concept is only beginning to gain traction in 
the industry. Hence, there remains tremendous potential for computational modeling at 
the cell to organ scales in drug discovery though the challenges are greater than in other 
applications. 
 
V. Pathways and Networks Modeling  
V.1 Impact of Modeling through 2009 
By definition, “Pathways and Networks” refer to the interconnectivity of various 
elements of a system, and these elements can range from individuals in a population, to 
cells and tissues in the body, to genes and proteins in a cell, or to atoms within a 
molecule.  In addition, network connectivity can span disparate elements that exist at one 
or more of these spatial scales, so concepts and methods underlying pathways and 
networks are inherently central to integrative multi-scale modeling.   
 
In perhaps the most general sense, the success of pathways and networks modeling is 
reflected in the application of graph theory and kinetic analysis to complex network 
topologies, whether they represent evolutionary dynamics, individuals within a 
population, physical and regulatory interactions between genes and proteins, or signaling 
mechanisms and cascades within and between cells. This approach has helped 
investigators to describe and interpret complex interactions in terms of functional 
modules and motifs such as positive and negative feedback loops, bistable switches, 
ultrasensitivity, etc., using much the same methods and terminology developed earlier for 
various branches of engineering (e.g., electrical circuit design). Particular examples of 
success include cell cycle dynamics controlled by feedback between cyclin-dependent 
kinases, engineering of gene regulatory networks into single-celled organisms (synthetic 
biology), synaptic and neural networks, modeling and simulation of the immune system 
(e.g., kinetic proofreading of immune signals), and DNA damage and repair (cancer 
biology). A growing complement of powerful and easily used tools and resources is now 
available for modeling cell regulatory dynamics.37 
 
Ronald Germain illustrated how mechanistic cell systems models have elucidated 
fundamental scientific questions in immunology such as how the T-cell can specifically 
respond to such low numbers of foreign ligands when they are presented in an 
environment full of structurally similar self-peptide/MHC molecule complexes without 
mass action-driven desensitization or activation mediated by these self-ligands. Models 
have shown how specific key biochemical feedback loops play a critical role in achieving 
this discrimination. 
 
V.2 Acceptance of Modeling as a Driving Tool 
In light of the growing complexity of networks and pathways, there is no doubt that 
modeling and simulation are essential to understanding, whether in the context of basic 
research or clinical applications.  As a result, the onus on modelers has shifted at least 
somewhat, from proof of principle or proof of usefulness, to clarity of presentation and 

                                                 
37 http://stke.sciencemag.org/cgi/ul/sigtransUl;CAT_7 
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meaning, so that the experimental community can more easily understand, integrate, and 
adopt tools and approaches developed by modelers. There are also ongoing sociological 
issues, but these issues are bidirectional. It remains all too easy for growing modeling 
communities to segregate themselves from experimental communities, but by the same 
token, it remains all too easy for experimental communities to remain divorced from 
modelers.  Hypothesis-driven experimental science is in fact driven by models, but often 
such models are composed of empirical concepts rather than quantitative relationships 
and parameters. It is imperative that both communities recognize the utility and 
limitations of both conceptual and quantitative models, and that the synthesis of 
conceptual and quantitative models is the ultimate goal and necessity. 

 
Modeling is now essential to the study of systems with many components and complex 
connectivity. In certain areas this is not only well accepted, but inescapable – for 
instance, data analysis of high-throughput experimental investigations, multiple areas of 
bioinformatics (e.g., multiple sequence alignment and structure prediction), structural 
biology, genomics and genome-wide association studies, and others.  Even outside of 
high-throughput studies, there is increasing emphasis and use of integrated software 
environments for multi-scale network modeling and physiological modeling, with 
considerable effort now aimed at improving user interface design for non-modelers. 
 
The question of “what hasn’t worked” still largely reflects outstanding difficulties and 
complexities of multi-scale biological models.  How does one map networks and 
pathways of interactions into spatially realistic models?  How does one decide when a 
spatially realistic model and stochastic approach are required in place of a single 
compartment model and the use of continuum methods?  How can one efficiently explore 
the impact of stochastic methods applied to a spatially realistic model?  Several key 
factors underlying all of these questions are the difficulties encountered with multiscale 
software development and the computational costs incurred with spatial realism and 
stochastic approaches.  Computational cost has also been a critical limiting factor for 
molecular simulations over many years, with resulting disappointments in so-called 
“intelligent” drug design.  In addition, cross-fertilization of ideas and approaches remains 
difficult between “data-rich” and (relatively) “data-poor” areas, e.g., systems biology vs. 
classical neuroscience and other subsets of human physiology. 
 
V.3 Major Challenges 
Joel Stiles pointed out that one considerable challenge for the future is the computational 
expense of complex models. This is true for multi-scale models in general, but perhaps 
especially so when envisioning pathways and networks mapped into spatially realistic 
models that employ stochastic simulation methods. A very wide range of biological 
timescales confronts any quantitative model, and it remains quite difficult to push from 
atomic-molecular-cellular times and events to organ-body-population levels and insights.  
The time of the computational “free lunch” is now over; single-chip clock speeds used to 
double every eighteen months or so, with concomitant increases in the speed of 
simulations, but now semiconductor physics have imposed limits that are difficult to 
overcome.  As a result, multicore technology now accounts for continuing increases in 
computer speed, but adapting models and simulations to large-scale multicore systems is 
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often non-trivial.  Specialized hardware, such as application-specific integrated circuits, 
may be increasingly necessary in a variety of forms, but development of any specialized 
hardware is very expensive and time-consuming. 
 
Even more costly will be the software development required for multi-scale, spatially 
realistic stochastic models of pathways and networks, designed to address uncertainty 
quantification, cell-to-cell variability, and many other issues.  In addition, such studies 
will require effective handling of massive data, e.g., immunological and cancer networks, 
or neural Connectome data at the level of white matter tracts and/or synaptic connectivity 
in gray matter.  From the standpoint of both hardware and software design, there is an 
ever increasing need for integrated multidisciplinary teams, along with associated plans 
for training and professional development, people support, and academic rewards.   
 
V.4 Opportunities for Modeling to Further Impact Research and Policy 
At the level of cell, tissue, and organ physiology, modeling and simulation are already 
playing a role in patient-specific testing and intervention.  There is no doubt that over 
time, the same will be true for clinical neuroscience, immunology, cancer biology, and 
virtually all other areas, as multi-scale networks and pathways are integrated with 
increasingly realistic and complete models of human systems.  For many years, a 
“realistic” model of a “complete” cell has been viewed as an unreachable grand 
challenge, both because of the incredible diversity of cellular phenotypes and the 
concomitant computational challenges.  At this point, however, it is time to revisit this 
challenge and consider exemplars that could become feasible within the next five years or 
so.  For example, a model of a complete neural circuit with explicitly delineated synaptic 
connectivity, or a model of nuclear structures and gene regulation using hybrid methods 
spanning atomic, molecular, and subcellular levels of detail could be contemplated. 
 
Dr. Hunter pointed out that this will depend on the development of open model and data 
standards, model/data repositories and freely available open source software. This should 
have a big impact on the broader community, provided the user interfaces are designed 
for biologists or clinicians to use. He said we should be trying to integrate modeling into 
all areas of biomedical science as mathematics is the language of quantitative science and 
there is no other way to handle the complexity of biological systems.   
 
Dr. Germain also re-emphasized the need for multidisciplinary groups to achieve success 
in modeling pathways and networks and discussed the scientific and sociological 
impediments to success in this arena. He described the new Program in Systems 
Immunology and Infectious Disease Modeling (PSIIM) at the NIAID, which is structured 
as a team-based interactive enterprise rather than as the typical independent set of PI-
driven laboratories within a department. Each team lead has been recruited for expertise 
in a key area of systems biology, whether wet lab or computational, including pathway 
analysis using high throughput RNAi methods, proteomics, genomics/epigenetics, 
modeling and simulation, and bioinformatics. To facilitate career development in this 
integrated environment, Dr. Germain worked with the NIH administration to change the 
tenure rules to recognize the value of each individual’s contributions to publications 
resulting from the coordinated efforts of a team-oriented program of this nature. He also 
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reviewed how the PSIIM had as major goals the development and broad dissemination of 
computational modeling and simulation software useful to the average biologist and 
SOPs for the definition of pathway nodes and edges and quantification of molecular 
amounts and concentrations, to provide the tools and methods that would allow non-
computational investigators to bring modeling into the purview of their research efforts.  
 
Timothy Kinsella described the progress of the NCI’s Integrative Cancer Biology 
Program in improving understanding and management of cancer through the use of 
predictive in-silico models to integrate and explore the large “omic” datasets with clinical 
information.     
 
VI. Atomic and Molecular Modeling 
VI.1 Impact of Modeling through 2009 
There have already been many notable success stories from molecular modeling in the 
field of drug development. A spectacular example of drugs made possible through 
molecular modeling successes are inhibitors of the two viral enzymes HIV protease and 
reverse transcriptase (RT) protease inhibitors38 and RT inhibitors are now regular 
components in HIV drug cocktail therapies. The SARS virus inhibitor was identified by 
computer-aided molecular design three years after the global effort coordinated by the 
World Health Organization (WHO) mapped the SARS genome. Potent thrombin 
inhibitors for blood clotting diseases were also based on molecular modeling by Merck 
scientists. Other drugs developed in large part by computational techniques include the 
glaucoma treatment Dorzolamide, the migraine medication Zolmitriatan, and the well 
known Sildenafil (initially developed for hypertension and then angina). Notable 
herbicides and fungicides were also developed by QSAR techniques. 
 
In addition to promoting the successes of modeling, it is important for us to learn from 
failures, both to see how we can push in certain areas for improvement as well as to 
educate more broadly the limitations of a given model. Finally, there are cultural barriers 
and traditional training in many fields is not completely amenable to computational 
science. 

  
VI.2 Acceptance of Modeling as a Driving Tool 
To improve perception and reduce doubts among experimentalists, molecular modelers 
need to show that computation can be quantitative and useful. One concern is that models 
of this kind usually have too many parameters to identify with confidence. One can make 
numerous models that fit data, and look for the most probable models, but we often lack 
sufficient data to completely specify a model. Thus, we need more experimental data to 
help further constrain the model details (this could take the form of experimental tests of 
models or experimental determination of parameters to go into models). 
 
One key is to show the predictive ability of molecular models, as opposed to their ability 
                                                 
38 Marrone et al. Structure-based drug design: computational advances. Annu Rev Pharmacol Toxicol 
(1997) vol. 37 pp. 71-90 
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to reproduce the data with which they were constructed. Also, we expect that certain 
“Killer Apps” will be helpful to drive acceptance. These applications would be classic 
applications which share challenges with a broad range of other applications and also 
have a wealth of experimental data in order to test and validate the computation. This 
would ideally take the form of some success story in which modeling combined with 
experiment clearly leads to something greater than experiment alone. 
 
The panelists also felt that there is a strong need for mathematics, physics and 
computation-based biomedical interdisciplinary training, both at the undergraduate and 
graduate levels as well as continuing professional education of peers and colleagues, for 
example through symposia, short courses and workshops. 
 
At the molecular scale, there is a stronger culture of community developed codes than 
community developed models, in part since models generally come from detailed 
measurements, such as X-ray crystallography. However, there are exceptions, such as 
models of the nuclear pore complex, which required a collaborative effort, owing to the 
challenges involved. This suggests that higher order scales would need community 
development, but not the single-protein scale. Here “model” is typically defined as the 
atomic coordinates of a structural model of a given protein or protein complex; we stress 
that the other components of a model, such as force fields have a strong history of 
community development at the atomic scale. 
 
Peer review for modeling research is a major challenge for the acceptance of modeling in 
general. There is a Catch-22 that modeling will not be accepted without high profile 
successes, yet many results will not be published in high profile places without broader 
acceptance of modeling in general. For example, many biology and chemistry journals 
return without review modeling manuscripts that do not include experimental validation. 
 
This is a cultural difference from, for example, the physics community, in which 
theoretical prediction has a long history. Indeed, the best way to make “true predictions” 
(as opposed to predictions after the fact) is to publish the results prior to experimental 
validation, but this is currently not supported by many journals. Finally, high profile 
predictions could encourage experimentalists to test predictions, which would either gain 
acceptance of these models (if the prediction is successful) or improve those models (if 
the prediction is not successful). However, such an approach does come with a significant 
potential pitfall, as a controversial failure of a model could compromise wider acceptance 
of modeling by the experimental community. 
 
VI.3 Major Challenges 
One key area for modeling infrastructure is the ability to share models. There are well 
known outlets for sharing experimental structural data, e.g. the Protein Data Bank 
(PDB)39, but nothing for model sharing. We are really missing this for all levels, even 
atomic scale models, of structures, which are usually depreciated in the PDB (i.e. not 
easily accessible or searchable). 

                                                 
39 http://www.pdb.org/pdb/home/home.do 
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We need a model sharing resource to share many aspects, including structural data, force 
fields, and metadata. This also leads to a data provenance issue as well as highlighting the 
need to have a formal way to facilitate collaboration. There are existing tools for sharing 
code that could perhaps be used as a model. The PDB is successful because the 
community knows and accepts that all structures go to the PDB, and the PDB is 
referenced by journals. One solution would be for journals to encourage some sort of data 
or code sharing plan, such as the recent addition of a software archive by PLoS 
Computational Biology. Another solution would be for literature search tools like 
PubMed or the journals themselves to include computational models somehow into their 
databases, at least as a citation.  
 
VI.4 Opportunities for Modeling to Further Impact Research and Policy 
At the atomic scale, calculating the uncertainty of a given model is hard to do 
quantitatively, so it is often neglected. This suggests the natural question of how can one 
give an implied uncertainty (e.g. a general sense of the level of statistical uncertainty), at 
the very least. Unlike in experimental research, our community currently does not have 
this level of standard.  There are examples of uncertainty calculations, especially in 
methods driven by statistical mechanics, such as Monte Carlo or molecular dynamics 
calculations, where one can perform error estimates. 
 
This suggests that an important goal would be to raise the bar in the area of statistical 
uncertainty, especially in order to facilitate acceptance by the medical community. As a 
community, including the point of view of a scientific journal, we may not want to set 
‘rules’ maybe just recommendations. Finally, we have been discussing statistical 
uncertainties above, but each type of model also has systematic errors, which are 
important to consider as well. 
 
The most important aspect of validation is whether a model has predictive value. Clearly, 
no model is perfect, but the determined value is whether it is predictive and under what 
regime. Moreover, this means that model invalidation is important, since all models have 
assumptions and regimes of applicability and we need to know in which regime(s) a 
given model can be trusted. 
 
 
VII. International Activities: The European VPH 
 
Dr. Viceconti described an ambitious initiative sponsored by the European Commission 
known as the Virtual Physiological Human (VPH) which aims to create a methodological 
and technological framework that will enable collaborative investigation of the human 
body as a single complex system40. Thus, the VPH is the framework of technologies and 
methods that will allow the classical reductionist approach to biomedical research to be 
complemented by an integrative approach where the detailed understanding of single 

                                                 
40 http://en.wikipedia.org/wiki/Virtual_Physiological_Human 
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partitions are composed in order to understand the complex behaviors that emerge by the 
systemic interaction of the various partitions across dimensional and temporal scales and 
across different organ and physiological process systems. 
 
As defined by the VPH research roadmap41, the VPH will make possible the delivery of a 
radically new approach to healthcare that includes personalized care solutions, more 
holistic approaches to medicine, and more preventative approaches to treatment. 
 
The VPH vision is tightly linked to the use of computer models, and in particular multi-
scale models, as modeling is the only possible way to approach the problem that 
integrative research poses.  It is only when the reductionist knowledge is captured into a 
predictive model that it is possible to form a systemic understanding. 
 
In Europe, the VPH initiative is driven by a large community of practice, within which 
researchers, industries and clinical experts collaborate on the development and the 
refinement of this vision. This community is currently incarnated in the VPH Network of 
Excellence (VPH NoE)42. For more information on the VPH initiative, interested 
individuals can join the Biomed Town on-line community43. Many shared resources are 
accessible via the VPH NoE website, or through the Physiome Space service44 and the 
VPH News feed45. 
 
There is a long-standing tradition of US-EU cooperation between biomedical researchers, 
usually by means or bilateral collaborations self-supported or funded by specific US or 
member state programs. Since the beginning of the VPH initiative in 2005 the community 
cultivated an international dimension through intense collaborations with non-European 
colleagues, in particular in New Zealand, Japan and the US. In 2007, a group of large 
research projects from all over the world signed the World Integrative Research Initiative 
(WIRI) agreement, which set a common research agenda46. In December 2007, 
representatives of the European Commission and of the U.S. National Institutes of Health 
(NIH) witnessed the research community signing of the “Osaka Accord on Worldwide 
Integrative Biomedical Research Cooperation”, which included the WIRI agreement as 
an annex. 
 
There have been a number of recent and forthcoming VPH conferences. Representatives 
of the DG Research and DG INFSO of the European Commissions and representatives of 
IMAG and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at 
NIH participated in a panel discussion entitled "Opportunities and challenges for 
International Cooperation” as part of the ICT-BIO 200847 conference in Brussels, 

                                                 
41 http://www.europhysiome.org/roadmap 
42 http://www.vph-noe.eu/  
43 http://www.biomedtown.org  
44 http://www.physiomespace.com  
45 http://www.biomedtown.org/biomed_town/VPH/VPHnews/RSS  
46 http://ec.europa.eu/information_society/events/ict_bio/2008/index_en.htm 
47 
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Belgium. A follow-up event (VPH 2010)48 is scheduled for September 30th – October 1st, 
2010, in Brussels. 
 
On January 2010 a new international action, called ARGOS, was initiated. The European 
Commission DG RELEX (external relations) funded some policy action under the 
heading “Transatlantic Methods for Handling Global Challenges in the European Union 
and the United States”, including ARGOS: “Transatlantic Observatory for Meeting 
Global Health Policy Challenges through ICT-Enabled Solutions”. The action explicitly 
targets electronic health records and the VPH as primary topics. This observatory will run 
until June 2011, and it is expected to produce a comparative analysis of current US and 
EU policy approaches. 
 
 
VIII. Multi-Scale Modeling in Medical Device Design 
 
Tina Morrison described an FDA project led by Dr. Donna Lochner, Deputy Division 
Director, FDA, on leveraging simulation-based engineering and medical imaging 
technology for cardiovascular device design. The FDA’s goal is to harness computer 
modeling and medical imaging to enhance the regulatory review process of 
cardiovascular devices. 
 
Dr. Morrison stated that engineering analysis methods are needed to predict whether a 
proposed design will function safely. Computer simulation methods have the ability to 
manage and integrate data from a variety of sources (animal, preclinical and clinical). 
Together with data mining strategies, computer models can help to determine the most 
sensitive and critical design areas and improve our understanding of under-represented 
anatomies (e.g., pediatric patients) and physiologies. 
 
Device manufacturers are familiar with the use of computational engineering tools to 
evaluate device performance.  But one of the key challenges in the arena of implanted 
medical devices is knowing what the in-vivo conditions are and how to translate them 
into boundary conditions on a computer model of the device itself.  The goal of the 
project is to improve understanding of device performance in all regions of the body, and 
in under-represented populations. 
 
Through public workshops49 the FDA has promoted the use of computational modeling in 
cardiovascular device design and evaluation. During these annual workshops, starting in 
2007, clinicians, academicians and medical device manufacturers share their research 
efforts in advancing computer modeling and gathering medical data for the use of 
computer modeling.  This year, the 2010 workshop will focus specifically on gathering 
data for computer models and nonclinical models (e.g., bench-testing boundary 

                                                 
48 http://www.biomedtown.org/biomed_town/VPH/VPHnews/vph2010  
49 FDA/ NHLBI/ NSF Workshop on Computer Methods for Cardiovascular Devices March 18-19, 2008; 
June 1-2, 2009; June 10-11, 2010 
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conditions) and demonstrating how these two models work together in the evaluation 
process of cardiovascular devices. 
 
The Division of Cardiovascular Devices currently has four projects underway to address 
barriers to implementation of computational modeling in device design and evaluation. 
These four projects, in particular, will shed light on the biomechanical environment of the 
aorta, the superficial femoral artery, mitral valve, coronary arteries and atrial septum, 
which the Division hopes to translate into boundary condition for finite element models 
or engineering bench tests. 
 
At the FDA, cardiovascular devices undergo a wide range of rigorous engineering tests. 
This relates closely to validation and the availability of appropriate data.  Many of the 
models submitted to the FDA with regulatory submissions are not validated, and if they 
are, they are typically only validated for one loading mode or range of deformation. This 
is a particular concern for the FDA and for the medical device industry. 
 
An important goal shared with the academic community is to develop reference data, 
guidance documents, white papers or other tools to integrate computational modeling into 
regulatory evaluation of cardiovascular devices, such as a public database of boundary 
conditions including imaging data and computer models. The FDA envisions an open-
source repository of computer models and image data and representing the diseased 
vasculature, bench testing parameters and boundary conditions to evaluate fatigue or 
other properties that relate to the safe and effective design of cardiovascular devices. 
 
Dr. Morrison summarized the discussion by stating that the FDA recognizes that 
computer modeling can be used to augment bench, animal and clinical testing because no 
one model can demonstrate safety and effectiveness alone. Through collaborations, the 
FDA can harness expertise, perspective and information to enhance regulatory evaluation 
and device development process. 
 
 

IX. Conclusions 
 
The advantages of modeling are now clear in investigation at all scales of biological 
organization. At the population level, models are primarily developed to help make 
decisions that directly impact patients and/or populations.  The decision can come in the 
form of a policy recommendation, a clinical guideline or even the “go-ahead” (or not) to 
run a new experiment.  At all scales, models inform decision by integrating existing 
clinical or experimental data.  In the words of David Eddy, “A model can be viewed as an 
extension of the mind,” particularly when the data is vast and diverse, and the mind can 
not fully process its complexity in order to pass judgment toward a decision. The model 
provides a framework for capturing the complexity and quantifying uncertainty.  
 
In cases where the desired empirical data can not be obtained, because the clinical trial or 
biological experiment is not feasible, possible or ethical, then models can be used to 
extrapolate beyond the existing observations.  The value of model-based extrapolations is 
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particularly appreciated in the field of epidemics, since the study of epidemics cannot be 
conducted via a trial.  
 
Modeling as an integral part of all biological research is now inevitable – it is only a 
matter of time, but we should work to accelerate the process.  For example, the 
complexity of pathways and networks as we currently appreciate them, already goes well 
beyond the limits of human intuition.  Modeling and simulation of pathways and 
networks will be essential to new drug design as well as safe and effective gene therapy, 
especially for the complex multifactorial diseases that we face today.  And finally, 
experience shows that modeling and simulation can be communicated effectively to non-
modelers, but it takes substantial time and effort, the proper tools and training, and 
sustained support. Below we summarize key points that emerged from discussions of 
each of the four charge topics: 
 
IX.1 Impact of Modeling through 2009 
o Statistical models at the population level have had an impact on health care coverage 

decisions and the development of clinical guidelines, in various settings including 
infectious disease epidemics.  

o Whole body models are increasingly being used in clinical practice, especially in 
metabolic diseases and orthopedics. 

o Models that integrate from cell dynamics to organ scale function are now well 
established in several biomedical fields including cardiovascular, pulmonary, 
neuroscience, immunology, cancer biology, and musculoskeletal research.  

o Similarly, mechanistic systems models have elucidated fundamental scientific 
questions in cell signaling and are becoming part of the scientific toolkit for 
quantitative investigation of signal transduction pathways.  

o Modeling and simulation have also significantly impacted drug development, both at 
the molecular scale in the design of small molecules and at the clinical level through 
the use of pharmacokinetic and pharcodynamic models in clinical trial design. 

 
IX.2 Acceptance of Modeling as a Driving Tool 
o While hypothesis-driven biomedical research is typically guided by conceptual 

models, the acceptance of quantitative computational models by the biomedical 
science community varies widely and is not yet widespread, even as modeling has 
become well integrated in certain fields such as electrophysiology and neuroscience. 

o The advent of pharmacometrics has increased interest in using computer-intensive 
tools in decision making for pharmaceutical research. 

o In light of the growing complexity of networks and pathways, the increased 
integration of modeling in biomedical science is inevitable. Increasingly, new 
structural and functional data are driving new models. 

o Modeling is also driving the development of new software and hardware 
technologies. 

o The onus is on modelers to shift from proof of principle to accessibility and 
reproducibility so that the research community can more easily understand, validate, 
integrate, and adopt models and modeling tools. 
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o In some fields, such as molecular modeling, there is a stronger culture of community 
developed codes than community developed models. 

 
IX.3 Major Challenges 
o The more widespread use of modeling and simulation will depend on the capability to 

assimilate and integrate in teaching, research and development, diverse and disparate 
experimental data, biological mechanisms, computational and mathematical methods, 
and other knowledge that arises from multiple levels of biomedical investigation. 

o Modeling will continue to require an understanding of both physics, mathematics and 
biology, which will continue to drive the need for greater interdisciplinary 
collaboration and more training programs that bridge different scientific cultures. 

o Acceptance of models and their accessibility to the research community will require 
better tools for modeling, more standardized protocols for assessing model validity, 
robustness and uncertainty, and improved techniques for data collection and analysis. 

o There remains a large unmet need for well-curated databases of heterogeneous, multi-
scale, structural, functional cellular, tissue and organ physiological data and 
infrastructure that facilitates model sharing such as open model and data standards, 
model/data repositories and freely available open source software. 

o The wide range of biological timescales makes it difficult to integrate from atomic-
molecular-cellular times and events to organ-body-population levels. Similarly, 
spatial organization enormously complicates cell systems biology. 

o The consequent computational expense of complex biomedical models is a major 
challenge as is the high cost and time required to engineer, develop and maintain high 
quality software for implementing complex models with large computational or data 
handling requirements. 

o Modeling investigators in biomedicine are still too isolated from each other, 
especially across integrative scales and between medical specialties. 

o Improved peer review for modeling research is still challenging in part because the 
means for testing and validation of models and model findings submitted for 
publication review is usually impractical. 

 
IX.4 Opportunities for Modeling to Further Impact Research and Policy 
o Mechanistic models will have an increasing impact at the population level and will 

become integrated with statistical models. 
o As models capture more clinical and biological realism and account for better 

population diversity, they will continue to have a growing impact on health policy, 
clinical guidelines and drug development. Data collection and availability will likely 
determine the rate of this progress. 

o Whole-body modeling has an opportunity to influence the development of improved 
clinical work flows and standard operating procedures. 

o Since cell-tissue-organ scales bridge a key gap between bench biology and clinical 
medicine, there is a substantial opportunity for growth in the number and scope of 
translational applications of multi-scale models, especially patient-specific modeling 
for diagnosis and therapy planning. 
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o The goal of developing a structurally and functionally detailed complete cell model is 
emerging as a new grand challenge. 

o There is substantial untapped opportunity for greater cross-fertilization between 
biomedical modeling subfields such as computational neuroscience, systems biology 
and physiome research. 
o An increasing impact of modeling at all scales of research is inevitable. This is 
largely because biological dynamics are complex and frequently defy intuition and 
predictability by only human means.



 36

X. APPENDIX A:  Public Commentaries 
 

Richard Olshen, Ph.D., Professor of Biostatistics, Department of Health Research 
and Policy, Stanford University School of Medicine 
 
I have written about simulation and modeling, and about the requirement that a 
model incorporates all sources of randomness, whether in (frequentistic) conditional 
distributions of observations given the model and its parameters or in (Bayesian, or 
random effects) distributions of parameters themselves, given a model.  The latter 
are concerns of geneticists when they study “admixture,” indeed of epidemiologists 
and others who attempt to draw inferences from “non-randomized experiments.” 
 
Though I have never drawn formal distinction between them, and the distinction 
may be too crude at best, it may be worthwhile to distinguish between qualitative 
and quantitative models, and between purposes for which one constructs models in 
the first place.    In this admittedly crude formulation, it seems that there are at least 
two very different kinds of qualitative models.  One concerns, for example, models 
of financial outcomes that are at least approximately verifiable from data.  
Examples have probability generating mechanisms that are one-sided stable laws 
with reflecting barriers, processes for which sample paths are monotonic except for 
occasional large downward “jumps.”  While I am hardly an expert regarding these 
models, I know that they have found wide application.  While one can construct 
tests of “goodness of fit” of data to such models, and may find confirmatory 
evidence in data, models cited are not useful for predicting the future of particular 
sample paths, no matter any ergodic properties.  This failure owes to the description 
of sample paths being at best qualitative.  The Markov property is equivalent to 
future and past being conditionally independent given the present; but given the 
present, the time until a discontinuity is not only unknown but unknowable from 
previous data.  However, even though such models may not aid prediction – in my 
view is the principle goal of science – they may be very useful to those who set 
policy, where goals are not of predicting future properties given the results of 
individual sample paths thus far. 
 
There are other models that seem to me neither particularly useful for prediction nor 
helpful aids to setting policy.  I have in mind models that entail such as “the path of 
a coastline is not of bounded variation.”  Such qualitative conclusions seem to me 
unverifiable from data.  This is not to preclude their mathematical elegance, only to 
call into question their scientific usefulness.  My concern applies even when 
particular assumptions or findings entail, for example, a precise value of the 
Hausdorff dimension of some set in question.  
 
Predictive, quantitative models seem to be very different.  They may be at least 
approximately verifiable from data, and also may allow prediction of future from 
past data.  In particular, they may also lend understanding to non-random 
mechanisms that enabled prediction.  One extreme example, were it possible, might 
be predicting some aspect of folding of a protein from its nucleotide or amino acid 
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sequence.  Even when understanding non-random phenomena is difficult at best, 
models may be very useful not only for setting policy.  Examples include prediction 
of six month survival for patients who have suffered myocardial infarctions and 
have survived to leave the hospital.  
 
To summarize, in general models may be qualitative or quantitative.  Models may 
be useful for predicting the future of a particular sample path or for setting policy.  
These two goals are not the same.  At best, models enable quantitative 
understanding of non-random phenomena that govern prediction and that also are 
verifiable from data.  
 

 
 

Relevant excerpt from the 2009 JASON report on Rare Events (PDF pages 35-44), 
http://www.fas.org/irp/agency/dod/jason/rare.pdf  

 
"From a programmatic standpoint of funding research, the main problem with 
standalone research projects that aim to create new (insight) models is that they 
separate the model’s creator from the model’s user community, so they tend to face 
an adoption barrier. Experts are rightly skeptical of new tools developed by non-
experts, especially if a model appears complex, mathematical, and highly abstracted 
rather than hewing closely to real-world data analysis needs. Success of an insight 
tool should ultimately be judged by how many experts use it and find it 
indispensable in their work. “Useful to experts” necessarily includes many factors 
that become just as important as the scientific validity of the model – issues such as 
software quality and usability, in the case of computer models. Therefore an 
important part of any research plan to develop new models is the researchers’ plan 
for collaboration and adoption by experts. Will the tool be used and evaluated by 
real-world analysts? Do they find it useful? Will it spread to other analysts if it is 
successful?"  
 
 

 
James Bower, Ph.D., Professor of Computational Neurobiology University of Texas 
 
“Hypothesis-driven experimental science is in fact driven by models, but often such 
models are composed of empirical concepts rather than quantitative relationships 
and parameters.” 
  
First, there is no doubt that, by definition, true hypothesis driven science requires 
models.  Assuming that NIH is funding hypothesis driven research, then, in 
principle, all research proposals should be include or be related to, and the 
outcomes advance some model.  If this is not the case, then the usefulness and even 
accuracy of the data obtained is suspect. 
  
The important question then becomes how one defines a model.  As also stated 
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above, the vast majority of times the word “model” is used in biology, it is used 
almost metaphorically, to describe some more or less empirical idea about the 
relationship between things.  Classically, this is done in the form of some kind of 
block and arrow diagram positing relationships at almost any level from molecular 
to whole systems.  These block and arrow diagrams are now a standard feature at 
the start of biological papers and presentations, where they give the impression that 
there is some solid model, or understanding behind the work being presented.  
However, in my experience, if a model does not have a mathematical structure then 
the objects being modeled or their relationships remain fundamentally undefined. 
Rigorous mathematical definitions are important because, otherwise such models 
can easily be made to account for whatever new data is obtained.  Further, without 
mathematical descriptions it is often not even clear if everyone in a field is talking 
about the same thing.   
  
Unfortunately, in my view, just because a model has a mathematical basis also does 
not mean that it is useful as a tool to advance our understanding.  The issue of 
models as tools is, in my view, critical to the eventual success of modeling (and a 
particular model).  I would argue that, at present, the majority of mathematically-
based models in biology are not in fact useful in advancing the field, because most 
are intended to demonstrate principles – rather than as tools for discovery.  In other 
words, most models are built to explain to others (or most often to convince others) 
how the system works, rather than as a mechanism to discover features of the 
system not understood previously.  Accordingly, I have said many times that if you 
don’t know anything more about the system after you build the model, than you did 
before, it is of little use.  Unfortunately, these are the kinds of models typically built 
by non-biologists (physicists, engineers, computer scientists) trained in programs to 
‘bring modeling to biology”.   
  
While this might seem at first a subtle distinction, in practice it is not at all.  I would 
say that there is often one clear telltale sign of models built as tools, and that is that 
they are first and foremost built to be structurally and physiologically realistic 
without reference to ideas about function.  In some large sense, what we are doing 
in biology is trying to figure out how biological forms reflects function.  If the 
model being constructed abstracts the form at the outset, there is very little chance 
that one will learn anything one doesn’t already know or believe.  If, on the other 
hand, the model is built first and foremost as a realistic representation of the system 
in question, then through an iterative process involving the interplay between 
modeling and experimental studies, it is possible to discover relationships you 
didn’t know existed before you started building the model.   
  
What this means is that simply replicating data (often described as a form of model 
‘prediction), is not a good enough measure of a model, and for certain,  overall 
simplicity is also likely not a virtue.  By analogy, Ptolomy’s model of the solar 
system replicated and predicted the position of the planets extremely well. The 
model was also ‘simple, being constructed from well known mathematical objects 
(circles).  But, because it was not in fact anatomically realistic, there was no way to 
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understand the role of gravitational attraction in governing the structure of the solar 
system.  This required the construction of a “realistic model” (in this case by 
Newton of the moon’s movement around the earth), out of which the inverse square 
relationship fell out.  In my view, biology as a science is in a very analogous 
circumstance as physics in the 16th century, and will need to travel through a 
similar developmental path to move forward.   
  
So, in summary and at the most abstract level, I would assert: 
  
1)    for progress to be made, all scientific studies need to be formulated and 
interpreted in the context of models 
2)    those models must be formulated mathematically so that the components and 
their interactions are defined. 
3)    Not all mathematical models are useful – those with the most value need to be 
constructed based on physiological and anatomical relationships, NOT constructed 
to demonstrate what one already believes to be the case. 
4)    The majority of “models” built in biology aren’t really models but illustrated 
stories.  The majority of mathematically-based models are built to demonstrate 
assumed principles rather than discover new principles. 
5)    This must change if we have any chance of understanding biological systems, 
including the nervous system 
6)    Educating future generations of biological scientists will be essential in making 
this transition. 
7)    Current leaders in the field – most of whom mostly tell stories, will resist this 
change as long a possible. 
  
  
And to conclude, again quoting from the section on network modeling: 
  
 “Modeling as an integral part of all biological research is inescapable – it’s only a 
matter of time but we need to accelerate the process.” 
  
On this I concur, but how much time is another question. 
  
“And finally, modeling and simulation can be communicated effectively to non-
modelers, but it takes time, effort, training, and support” 
  
For the reasons stated above, success for modeling in biology will actually be 
dependent, in my opinion, on training biologists to build models, not on modelers 
‘effectively communicating” to non-model building biologists.  As in the 16th 
century in physics, at the start of this effort in biology, the modeler and the 
experimentalist, must be one in the same.  To motivate this change, NIH should 
require all grant proposals be written with respect to quantitative models, and all 
published scientific experimental papers should require references to models as 
well.  
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XI. APPENDIX B: Meeting Agenda 
 
Tuesday December 15, 2009: 

8:00 Welcome - Grace Peng, IMAG Chair 

8:20 Donald Lindberg, Director, National Library of Medicine, NIH  

8:30-10:00 Population scale: epidemiology, risk and surveillance models, 
pharmacokinetic and pharmacodynamic models  
Participants: David Eddy, Bryan Grenfell, Sylvia Plevritis (Chair), Paolo 
Vicini 
Moderators: Patty Mabry (NIH-OBSSR), Timothy Gondre-Lewis 
(NIAID) 
 

10:00-10:15 Break 

10:15 Richard Nakamura, Deputy Director, National Institute of Mental 
Health and Director, Division of Intramural Research Programs NIMH, 
NIH 
 

10:25-11:55 Whole-Body scale: behavior and control systems  
Participants: Don Bolser (Chair), Marco Viceconti, Yoram Vodovotz  
Moderators: Peter Lyster (NIH-NIGMS), Nancy Shinowara (NIH-
NICHD) 
 

11:55-12:55 Lunch on your own  

1:00 Edward Seidel, Director, Office of Cyberinfrastructure, NSF (Presented 
by Abani Patra, IMAG, NSF) 
 

1:10-2:40 Cell-Tissue-Organ scale: interactions between all scales  
Participants: Andrew McCulloch (Chair), Jeff Smith, Shlomo Ta'asan, 
Vito Quaranta  
Moderator: Tom Russell (NSF-OIA) 
 

2:40-3:00 Break  

3:00 Jeremy Berg, Director, National Institute of General Medical Sciences, 
NIH 
 

3:10-4:40 Pathways and Networks scale: molecular interactions, systems biology  
Participants: Ron Germain, Tim Kinsella, Joel Stiles (Chair)  
Moderator: Jennie Larkin (NIH-NHLBI) 
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4:40-5:30 Open Discussion 

 

Wednesday December 16, 2009:  

8:00 Welcome Back - Grace Peng, IMAG Chair  

8:10 International Impact of Modeling - Marco Viceconti, Virtual 
Physiological Human Network of Excellence 
 

8:20 David Thomassen, Chief Scientist, Office of Biological and 
Environmental Research, Office of Science, DOE 

8:30-10:00 Atomic and Molecular scale: protein structure interactions  
Participants: Vijay Pande (Chair), Abby Parrill, Linda Petzold, Tamar 
Schlick  
Moderator: Susan Gregurick (DOE-BER) 
 

10:00-10:10 Leveraging the Simulation-Based Engineering and Medical Imaging 
Technology Revolutions for Cardiovascular Devices - Tina Morrison, 
Food and Drug Administration  
 

10:10-10:30  Break  

10:30-11:00 How Multiscale Modeling can Impact Biomedical and Clinical 
Research - Peter Hunter, IUPS Physiome Project 
 

11:00-11:15 Population Scale Summary  

11:15-11:30 Whole-Body Scale Summary  

11:30-11:45 Cell-Tissue-Organ Scale Summary  

11:45-12:00 Pathways and Networks Scale Summary  

12:00-12:15 Atomic and Molecular Scale Summary  

12:15-12:45 Open Discussion  

12:45 Adjourn 
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