Systematically understanding the immunity leading to CRPC progression
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Introduction Systems Modeling Strategies

m Prostate cancer (PCa) is the most commonly diagnosed malignancy and the second leading cause of cancer-
related deaths in American men.

The 3D hybrid multi-scale Agent-based Model of CRPC (HMSM)

mAndrogen deprivation therapy (ADT) has become standard treatment modalities of PCa. However, most of < ODE-based model
PCa will eventually become unresponsive and recur within 1-3 yeas after ADT as castration-resistant prostate S e B S
cancers (CRPC).
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m Previous studies have demonstrated that androgen receptor (AR) signaling pathway play a central role in PAKL [ -
CRPC and constitutes an attractive target for therapy. However, the treatment of PCa with AR antagonists can EGE e
also acquire resistance through AR mutations. Parkin Skp2
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m Recent studies indicate that the tumor-associated macrophages (TAM) exerts a negative impact on the Qe WA @zor \/ < o
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treatment response of PCa after ADT. AKT —
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m Our experiments show that the frequency of CD8+ T cells (CTLs) were increased at the early stage but Androgen i
reduced later following ADT. The secreted IL2 by CTLs promoted Treg expansion, which in turn suppressed CTL O%% i e
proliferation. Also, WNT5A secreted by Treg activated AKT/AR pathways and stimulated PCa cell proliferation. . Cad
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m Above observations indicate that the immunosuppressive microenvironment (mEg) in PCa appears be -7
responsible for the failures of various iImmunotherapies. \l, Androgen-independent ———
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m We proposed a predictive 3D hybrid multi-scale model (HMSM) for systematically understanding the immunity oty

leading to CRPC progression.
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Modeling Intracellular Signaling Pathways of PC with ODEs
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Data Generation and Analysis
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Model Prediction

Modal Validation under various contexts Simulated Tumor Growth
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To identify the potential therapeutic targets for CRPC development in
the iImmune mE, we simulated the effects of single or combined

C O n C I U S I O n S treatments. The predictions of two therapeutic strategies (purple stars)

were validated by experimental observations.

System modeling diagram

Prostate Compartment LN Compartment

m The proposed HMSM model may serve as a novel computational platform for
understanding the immunity leading to CRPC progression and provides a potential
therapeutic strategy in effectively improving the therapeutic response of ADT for
prostate cancer.

m Our predicted results show that blockade of TAM-PC interaction with PLX and
iInhibition of Treg proliferation with IL2 antibody have potential to overcome the
development of CRPC.
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m In the next step, we will assess two potential treatment strategies with our
computational model: PD1 therapy, and Skp2 or parkin targeting.
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