THE POTENTIAL OF
THE DIGITAL TWIN AS A
DISRUPTOR OF
HEALTHCARE:
PERSPECTIVE FROM
MEDICAL DEVICES

MARK PALMER, MD, PHD
DISTINGUISHED SCIENTIST
STRATEGIC SCIENTIFIC OPERATIONS

DIGITAL TWINS

DEFINITION

DIGITAL TWINS

DEFINITION

"HOLY GRAIL"

CLINICAL OBJECTIVES

- Optimize health
- Predict and prevent adverse events
- Planned interventions
- Extend quality of life
- Extend life

MODIFIABLE FACTORS

- Diet
- Exercise
- Sleep
- Environment
- Medication
- Therapy
- Surgery
- Implantables

PREDICT IMPACT ON PHYSIOME

CURRENT PERSPECTIVES

PHYSICAL SCIENCE

Anatomy & Physiology

DIGITAL THREAD

Electronic Health Record

DATA SCIENCE

Machine Learning

DIGITAL TWIN

Digital twins exist at the nexus of physical engineering, data science, and machine learning, and their value translates directly to measurable business outcomes.*

CURRENT PERSPECTIVES

PHYSICAL SCIENCE

DIGITAL THREAD

Electronic Health Record

HEALTHCARE

- Optimize health
- Predict and prevent adverse events
- Planned interventions
- Extend quality of life
- Extend life

IF THIS IS OUR FOUNDATION, HAVE WE ALREADY FAILED?

Largest sources of data is coming from individuals when they are at most challenging state of health

DIGITAL TWIN IN HEALTHCARE: CHALLENGES

1. DEFINING THE REFERENCE STATE

PHYSIOME

- Genome
- Transcriptome
- Proteome
- Metabolome
- Morphome
- Individuals differ at every level of their physiome
- Differences impact how they respond to modifiable factors
- Changes over lifetime

EVIDENCE BASED MEDICINE*

- Roots in clinical education
- Goal: reduce variability in resources and outcomes
- Ideally generated from Randomized Control Trials
- Analysis assumes "statistical homogeneity"
- Trials do not map well to real world (bias, tails)

*2012 De Leon, "Evidence-Based Medicine versus Personalized Medicine: Are They Enemies?"

MODIFIABLE FACTORS

- Diet
- Exercise
- Sleep
- Environment
- Medications
- Therapy
- Surgery
- Implantables

PERSONALIZED MEDICINE*

Roots in pharmacology

- Goal: Pharmacogenetics for tailoring of drugs
- Function of ~ 33% of genome still unknown
- Role of gene-gene interactions uncertain
- Assumes "statistical heterogeneity"
- Designing and funding RCT is challenging

DIGITAL TWIN IN HEALTHCARE: CHALLENGES

2. THE DATA (MINIMIZE INTERACTION WITH HEALTH SYSTEM)

CLINICAL ANALOG

- Optimize health
- Predict and prevent adverse events
- Planned interventions
- Extend quality of life
- Extend life

MODIFIABLE FACTORS

- Diet
- Exercise
- Sleep
- Environment
- Medications
- Therapy
- Surgery
- Implantables

DATA STREAMS

- Diet
- Location/GPS
- Activity monitors
- Some vitals
- Sleep monitors
- Biomarkers

- Medications
- EHR
- Vitals
- Labs
- Imaging
- Biomarkers
- Genetic analysis
- Are the existing clinical measurements optimal for predicting health?
- How do we generate accessible and affordable streams of data?
- How to ensure data quality? (eg: bad sensor placement)
- Majority of variables that define physiome are inaccessible
- Reliance on longitudinal "health record"

DIGITAL TWIN IN HEALTHCARE: CHALLENGES

3. DEFINING THE DISEASE OR ABNORMAL STATE

PHYSIOME

- Genome
- Transcriptome
- Proteome
- Metabolome
- Morphome
- Individuals differ at every level of their physiome
- Differences impact how they respond to modifiable factors
- Changes over lifetime

- How to manage genotypic expression of disease risk?
- How to manage genotypic expression of disease in absence of phenotype?
- Normal range for one individual may be pathological for another
- Time scale of onset of disease
- Time course of the disease

MODIFIABLE FACTORS

- Diet
- Exercise
- Sleep
- Environment
- Medications
- Therapy
- Surgery
- Implantables

DIGITAL TWINS IN CHRONIC DISEASE

A NEAR-REAL-TIME LINKAGE BETWEEN PHYSICAL AND DIGITAL WORLDS

PHYSICAL SCIENCE

DIGITAL THREAD

Electronic Health Record

DATA SCIENCE

DIGITAL TWIN

Digital twins exist at the nexus of physical engineering, data science, and machine learning, and their value translates directly to measurable business outcomes.*

DIGITAL TWINS IN CHRONIC DISEASEDEVICES & HUMANS

PHYSIOLOGY

HEALTHY

- complex milieu of overlapping control systems
- Multiple pathways influencing parameter of interest
- Coupled PDE's

CHRONIC DISEASE

- Control systems are saturated
- Deviation from reference is clear
- Measurements well defined
- Axes of intervention well defined
- Coupled ODE's

DIGITAL TWINS IN CHRONIC DISEASE

SENSOR ENABLED DEVICES & HUMANS

DIGITAL TWINS IN CHRONIC DISEASE

CLOSED LOOP GLUCOSE MANAGEMENT SYSTEM

- Algorithm adapts to individual patient's glucose metabolism
- Automatically adjusts basal (background) insulin every five minutes based on CGM readings
- Patient administers bolus for meals
- Algorithm is resistant to over or underestimation of carb consumption
- Stops insulin up to 30 minutes before reaching preset low limits

HELPS IMPROVE TIME IN RANGE.

With SmartGuard[™] technology, John's glucose levels are automatically[∆] adjusted, so he is free to live life more in the moment.

■ IN RANGE: 70-180 mg/dL
 ■ HIGH: 180-400 mg/dL
 ■ LOW: <70 mg/dL

OPTIMIZING MANAGEMENT OF INDIVIDUAL HEALTH

HEALTHCARE

- Optimize health
- Predict and prevent adverse events
- Planned interventions
- Extend quality of life
- Extend life

"Clinical medicine seems to consist of a few things we know, a few things we think we know (but probably don't), and lots of things we don't know at all."

Naylor CD. "Grey zones of clinical practice: some limits to evidence-based medicine". Lancet. 1995;345:840-842

THANK YOU

Medtronic Further, Together