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Abstract

U.S. law requires registration of clinical trial data in ClinicalTrials.Gov. This NIH/NLM governed registry contributed much towards providing important modeling data information by
accumulating over 300,000 clinical trials. However, despite the great effort by the government to centralize the data, the entities reporting data do not follow a predetermined standard.
Therefore, numerical information entered is machine readable, yet not machine comprehensible, especially due to units being entered as free text. If a machine cannot comprehend the
units, it cannot comprehend the numbers. This causes human intervention in the modeling process - slowing down modeling and the uses of this important registry.

The extent of the problem requires some machine learning, as of 12 Apr 2019, all 35,926 trials with results had 24,548 different units. The authors created solution infrastructure to
address this problem. The solution includes:

1) Data extraction tools for ClinicalTrials.Gov that can index data and assemble clusters of data with unsupervised learning.

2) ClinicalUnitMaping.Com : a website for unit mapping that also demonstrates the extent of the problem.

3) A collection of existing unit standards used for medical purposes that currently holds data from CDISC, NIST / RTMMS / IEEE, Unit Ontology / Bio Portal, UCUM.
4) Supervised Machine Learning using neural networks that can predict the standardized unit given a non standard unit.

The supervised machine learning techniques are new, and their development involved many technical aspects and many attempts to solve the problem. This publication will discuss the
difficulties and summarize multiple attempts, architectures, and solutions to resolve the problem.
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Proposed Solution | ClinicalTrials.Gov ~—*  Extracted 35,926 clinical trials in XML
o - \J

1. Aggregate and index all ClinicalTrials.Gov units [ ~—cpisc | Data processed in 360 batches in parallel -

- ] o R Data from 386 fields indexed |
2. Gather auxiliary unit standards / specifications: LfRTMMS (NIST/IEEE) - \J
9 unit fields indexed with relation to title |

- CDISC - Clinical Data Interchange Standards Consortium EU,nit Ontology / BioPortal

24,548 unique units extracted |

- RTMMS - affiliated with NIST / IEEE / ISO . :
I 4041 unique CDISC units |

- Unit Onthology from BioPortal (BIOUO) 1023 RTMMS & 61 UCUM - unique units
\ 604 unique Unit Ontology units

- UCUM - The Unified Code for Units of Measure (RTMMS / CDISC) v

Overall 5729 unique auxiliary units mapped \

3. Use python tools to:

NLP calculates proximity between all units |
- Find unit proximity using unsupervised Machine Learning and
Natural Language Processing (NLP)

ClinicalUnitMapping.com
- Create a web site for crowd mapping of the unit corpus . Database = «— 130 unit clusters created |

Machine Learning clusters close units |

- Create supervised learning technique to comprehend units

Unit Proximity with NLP + Clustering Collaborative Unit Mapping Web Site
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Supervised Machine Learning for Mapping units

Difficulties:

« There are too many target units to use ordinary classification

« Many units map to the same result so the translation is many-to-one rather than one-to-one
« Data distribution is unbalanced with many examples for some mappings

« Context of units has a large vocabulary

« Training data is limited - although growing in time

Multiple Solutions Attempted

Solution " Main Layers Encoding Comments References
ISimple Classification "Dense One Hot / Feature ||Simple solution, yet this problem has many classes and therefore not practical 1,2
Feature Classification ||LSTM /CNN one Hot Can be simple and fast yet requires mapping and sensitive and complex features require 3

dealing with sequences B

Sequence to Sequence Preset One Hot /
qu qu LSTM / CNN I Relatively simple flexible and reliable, training reasonable, and inference is reasonably fast  ||4, 5, 6
Length Embedding
ISequence to Sequence LSTM One Hot / Works well for short sequences, non trivial implementation. However slow inference since 57809 1
Encoder/Decoder Embedding GPU is not used in decoding .
CNN + D 11, 12, 13, 14,
Learning to Rank - Pairwise Twin ense [Embedding High complexity O(N*2) difficult inference due to pairwise nature T T

Chosen Solution Implemented Sequence to Sequence Networks so the Modeler Can:

« Control:
= switch neural network architecture
= decide on execution mode: New Netowrk, retrain old, or just test or plot using previously trained network
« Preprocessing:
> add noise to input units simulating typing errors, and control noise type
» decide if to duplicate dataset without one or more inputs to test missing unit context
« Neural Network Inputs:
> decide if to use unit input as one hot
o decide if to use unit input as integer for embedding
- decide if to use unit context as input
> decide if to add input attention to unit input when using both one hot and integer
« Training:
o decide network layer sizes and network depth
o decide if to use LSTM or CNN for context
> decide if to use LSTM or CNN for Units - only LSTM in Encoder/Decoder architecture
o set dropout rate for LSTM
> determine input data clusters used when training - automate multiple networks for multiple clusters
« Debug:
o request accumulated training history even when retrained
o look inside network layers of interest during training - this is beyond tensorboard support - implemented with PyViz
 Post-Processing:
- choose inference from between best Validation model. last trained model, or both
> decide on verbosity of output - e.g. number of closest units to output
* More Details:
> Mock training data mapped 24,548 units to 6,891 mock interpretations derived from clustering.
< In addition, post processing matched char sequence output to allowed unit interpretations within the same cluster.
> Closest units with a certain distance from prediction were explored for accuracy.
> Multiple distance metrics were used to deduce closest unit to predicted string.
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Neural Network Training and Validation Results For Multiple Architectures
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Summary

We created tools necessary to merge units of measure standards.
With such tools is will be possible for machines to:

- Recognize medical units, even if misspelled

- Comprehend medical units

- Comprehend numbers associated with units

Such Al will eventually replace tedious human tasks.

Future Work

- Perform human mapping of units using ClinicalUnitMapping.Com
- Apply the supervised machine learning tools to the mapped units

- Add the supervised learning API to ClinicalUnitMapping.Com

- Contribute to (UMLS), (CDISC), (SISO)
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Reproducibility:

This presentation is accessible here. The code that generated the presentation can be accessed here. This presentation is generated using Python 2.7.16, panel-0.5.1, holoviews 1.12.3,
bokeh-1.1.0. Code and data for this work are archived in the file: AnalyzeCT_2019_05_13.zip. Web site database was created using the database PartUnitsDB_2019_05_13.db
Supplemental code archived in the files: AnalyzeCT_Images_2019_10_10.zip, AnalyzeCT_Code_2019_05_15.zip. Clinical Trials data archived in
StudiesWithResults_Downloaded_2019_04_12.zip. Bio Ontology Units downloaded on 2019_04_09, CDISC data downloaded on 2019_03_30 , RTMMS units downloaded on
2019_03_24 . Mock database used in training was ModifiedUnitsDB_Remaodified.db . Tensorflow 2.0.0 was used for Neural Network execution in Python 3.7.4 environment . This
tensorflow version is unstable, so results presented may not be reproducible. PYTHONHASHSEED was set to 0. Execution transcripts were saved in the files:
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