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Methods

Motivation

We have data coming from an expensive, high fidelity 
model (H) and from an inexpensive low fidelity 
approximation of model (L), organized in input/output 
label pairs: 


We postulate an autoregressive model [1] between the 
different levels of fidelity with Gaussian process priors:


We pass the output of the latent functions through a 
sigmoid function to obtain meaningful probabilities and 
assign a Bernoulli likelihood to the binary data:


We adopt a fully Bayesian treatment for the hyper-
parameters. We use the NO-U-Turn sampler [2], which 
is part of Hamiltonian Monte Carlo methods. We take 
advantage of the probabilistic nature of the classifier to 
implement active learning strategies. We adaptively 
select the points near the boundary with high variance 
[3]. We also introduce a sparse approximation [4] to 
enhance the ability of the classifiers to handle large 
datasets.

We test these multi-fidelity classifiers against their single-fidelity counterpart with synthetic 
data (Figures 1 and 2), showing a median computational cost reduction of 23% for a target 
accuracy of 90%. 


In an application to cardiac electrophysiology, the multi-fidelity classifier achieves an F1 
score, the harmonic mean of precision and recall, of 99.6% compared to 74.1% of a 
single-fidelity classifier when both are trained with 50 samples. In general, our results show 
that the multi-fidelity classifiers outperform their single-fidelity counterpart in terms of 
accuracy in all cases.
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Machine learning techniques typically rely on large 
datasets to create accurate classifiers. However, there 
are situations when data is scarce and expensive to 
acquire. This is the case of studies that rely on state-
of-the-art computational models which typically take 
days to run, thus hindering the potential of machine 
learning tools. Nonetheless, there are usually lower 
fidelity approximations of the model that are less 
expensive to compute and can provide valuable 
information. In recent years, there has been an 
increased attention in the machine learning 
community to develop predictive methods that enable 
the effective fusion of variable fidelity information 
sources [1]. However, none of these techniques work 
in the case of binary output. In this work, we present a 
novel classifier that takes advantage of lower fidelity 
models and inexpensive approximations to predict the 
binary output of expensive computer simulations.

We present a novel multi-fidelity classifier using 
Gaussian process priors. While the multi-fidelity 
paradigm has been proposed for regression and 
uncertainty quantification [1], this work represents 
one of the first attempts to formulate and 
implement a fully-Bayesian multi-fidelity classifier. 
Based on an autoregressive Gaussian process 
prior that enables the seamless integration of data 
with different levels of fidelity, our classifier 
outperforms the single-fidelity classifier both with 
synthetic data and in an application of cardiac 
electrophysiology. To strike a balance between 
classification accuracy, data efficiency, and 
computational cost, we propose an active 
learning approach that takes advantage of the 
predictive uncertainty in our predictions [3]. This 
approach significantly reduced the error in both 
examples, showing a good combination of 
exploration of the parameter space and 
exploitation of the boundary. Although  the  multi-
fidelity  and  sparse  multi-fidelity  classifier  work  
better  in  all  examples  presented  here,  the 
d ifferences a re g rea te r i n the ca rd iac 
electrophysiology example.  This suggests that 
multi-fidelity classifiers are advantageous when 
there is class imbalance:  only a small region of 
the parameter space is labelled with a particular 
class. We envision that this new tool will enable 
researchers to study classification problems that 
would otherwise be prohibitively expensive. 
Source code is available at https://github.com/
fsahli/MFclass.
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of variable fidelity (see [3, 4]). For simplicity, here we outline the process
corresponding to two levels of fidelity, although this can be generalized to
arbitrarily many levels. In a two-level multi-fidelity setting we observe data
D = [{(xLi

, yLi
)NL

i=1}, {(xHi
, yHi

)NH

i=1}] = {X,y}, where (xL,yL) and (xH ,yH)
are input/output pairs generated by a low- and high-fidelity model, respec-
tively, typically with NL >> NH . Then, our goal is to set up a multi-variate
regression framework that can return accurate high-fidelity predictions while
being primarily trained on low-fidelity data. To do so, we consider the fol-
lowing multi-output Gaussian process regression model first put forth by [3]

yL = fL(xL) + ✏L (5)

yH = fH(xH) + ✏H (6)

fH(x) = ⇢fL(x) + �(x) (7)
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Here fL(x) and �(x) are considered to be two independent Gaussian pro-
cesses, ⇢ is a scaling parameter that is learned during model training along
with the variances �2

nL
and �2

nH
that potentially corrupt the low- and high-

fidelity data, respectively. As a consequence of the auto-regressive assump-
tion in Eq. 7, the joint distribution of the low- and high-fidelity data inherits
the following structure
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Evidently, the covariance of y now has a block structure, where the
diagonal blocks model the data in each fidelity level and the o↵-diagonal
blocks model the cross-correlation structure between di↵erent levels of fi-
delity. Model training and posterior predictions can now be performed by
using the concatenated low- and high-fidelity data along with this block co-
variance matrix structure replacing K in Eq. 2- 4. Specifically, the minimiza-
tion of the log-marginal likelihood in Eq. 2 will return the optimal set of model
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Figure 1 - Active learning of the synthetic example. We define an arbitrary boundary to test 
the performance of the multi-fidelity classifier. The high fidelity boundary is shown with a solid 
line and the low fidelity boundary is shown with a dashed line. For all steps the multi-fidelity 
classier presents a sharper boundary (middle row) and is more accurate (bottom row) than the 
single-fidelity classifier.

Figure 2 - Accuracy of the synthetic example. The top left shows box plots for 
different numbers of high-fidelity samples with no active learning. The multi-fidelity 
classifiers always outperform the single-fidelity classifier. The top right panel shows 
30 active learning trajectories for each classifier type. Both classifiers reduce their 
error when combined with the active learning strategy. We compare the accuracy of 
the classifier trained with 30 samples with and without active learning. The active 
learning approach achieves significantly higher accuracy.  The bottom right panel 
quantifies the difference in accuracy between the single- and multi-fidelity 
classifiers by counting the number of samples required to achieve 10% error when 
using active learning.

Figure 3 - Low and high fidelity models of the cardiac electrophysiology example. The top 
row illustrates the low fidelity model, a one-dimensional cable, where the vertical axis 
represents the position on the cable, horizontal axis represents the time elapsed, and the lines 
represent the action potential. The bottom row shows the high fidelity model, a two-dimensional 
patch of tissue, where the contour plots represent the action potential at a given time, with 
black being activated and white represents the resting state. Panels on left shows a secondary 
stimulus that is applied too early to generate a spiral wave. Middle panels show a case when 
the stimulus is applied within the vulnerability window and a spiral wave is created. Right panels 
shows a stimulus that is applied too late, failing to create a spiral wave.

Figure 4 - Classifiers of the cardiac electrophysiology example. Top left, test 
set used to evaluate the low fidelity classifier, with N = 1000. Top middle, single, 
low fidelity classifier trained with active learning to obtain NL = 84 used in the multi-
fidelity classifier. Top right, test set for the high-fidelity data. Middle left, resulting 
single-fidelity classifier with NH = 50. Middle panel, resulting multi-fidelity classifier 
with NH = 50. Middle right, sparse multi-fidelity classifier trained with NH = 50. 
Bottom row, accuracy comparison between single-, multi-fidelity and sparse multi-
fidelity classifiers, showing precision, recall, and F1 score.
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