Obesity and the Sustainability of Calcium Oscillations in Hepatocytes: Explicitly Modeling Mitochondria-associated ER Membranes

Jungmin Han and Vipul Periwal

Laboratory of Biological Modeling, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD

Motivation

Multiple cellular organelles tightly orchestrate intracellular calcium (Ca²⁺) dynamics to regulate cellular activities and maintain homeostasis. Throughout the cell domain, the endoplasmic reticulum (ER) and mitochondria form Ca²⁺ "hot spots" called mitochondria-associated ER membranes (MAMs). It has been proposed that the properties of these microdomains are closely associated with mitochondrial dysfunction in obesity.

Arruda et al. [1] showed that in mouse hepatocytes, obesity is linked with a higher degree of MAM formation, and higher expression levels of IP₃ receptors (IPRs) and mitochondrial calcium uniporters (MCUs). In obese mouse hepatocytes, ATP-induced mitochondrial Ca²⁺ signals showed higher peaks, compared to wild type, while the peaks of cytosolic Ca²⁺ signals were similar across the cells.

We constructed a mathematical model to reproduce the experimental observations in Arruda et al., and make predictions about the effects of obesity on Ca²⁺ dynamics in hepatocytes.

Our model simulations predict that in obese mouse hepatocytes:

- (1) Ca²⁺ oscillations are faster
- (2) mitochondrial Ca²⁺ oscillations are on a much higher base level, and

(3) Ca²⁺ oscillations are more likely to be abolished under higher levels of agonist IPR: Ca²⁺ releasing channels on the ER membrane; MCU: Ca²⁺ sequestering channels on the mitochondrial membrane

Conclusions

- Obesity is associated with the upregulation of MAMs, IPRs and MCUs in mouse hepatocytes.
- Arruda et al. showed that upon ATP stimulation, obese mouse hepatocytes exhibit higher peaks of mitochondrial Ca²⁺ signals, compared to wild type hepatocytes.
- Our mathematical model explicitly includes MAM Ca²⁺ dynamics.
- The model simulations are consistent with the experimental observations.

Our model predicts that:

- Obesity induces an increase in the oscillation frequency and the base level of mitochondrial Ca²⁺ oscillations.
- Obesity induces instability on hepatocytes Ca²⁺ oscillations under high concentrations of agonist.

Model Validation

▶ We performed model simulations with some parameter modifications shown in Table 1 to reproduce the experimental observations reported by Arruda et al. [1].

Figure 2. Model simulations (left) and experimental data (right, Arruda et al., Fig. 5C) showing effects of increased MAMs on the amplitude of mitochondrial Ca²⁺ activity.

- The model was a given a pulse of stimulus *P* shown by the inset graph. The green dashed lines indicate the onset of the pulse.
- An increase in the proportion of MAMs induced about 30% increase in the peak of mitochondrial Ca²⁺ trajectory.

Model simulations showing effects of the cellular changes associated with obesity on the amplitudes of cytosolic (left) and mitochondrial (right) Ca²⁺ transients

The same pulse was applied to the model under two different environments, one that represents the control condition and the other that mimics the cellular conditions associated with obesity.

▶ The peak of mitochondrial Ca²⁺ trajectory was increased under the obesity condition, while that of cytosolic Ca²⁺ trajectory showed a negligible change.

jungmin.han@nih.gov

References:

[1] A. P. Arruda et al., Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. *Nature Medicine*. **20**(12):1427-1435, 2014. [2] B. Wacquier, L. Combettes, G. Tran Van Nhieu, and G. Dupont. Interplay between intracel-Iular Ca²⁺ oscillations and Ca²⁺-stimulated mitochondrial metabolism. Scientific Reports. **6**:19316

Acknowledgements:

This work was supported by Intramural Research Program of the National Institutes of Health, NIDDK.

National Institute of **Diabetes and Digestive** and Kidney Diseases

L^B**BM**

ing Mathematics and Biology since 19