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Abstract

Results

Innate Immune Response Agent-Based Model (IIRABM)

Background – Modeling Philosophy

Introduction: Agent-based modeling frequently used modeling method for

multi-scale mechanistic modeling. However, the same properties that make

agent-based models (ABMs) well suited to representing biological systems

also present significant challenges with respect to their construction and

calibration, particularly with respect to the large number of free parameters

often present in these models. The challenge of dealing with parameters is

further exacerbated due to the fact that a great deal of phenotypic and

clinical heterogeneity can be attributed to intrinsic genetic/epigenetic

variation manifesting as functional parameter variation. We propose that

various machine learning (ML) and evolutionary computing approaches

(such as genetic algorithms (GAs)) can be used to more effectively and

efficiently deal with parameter space characterization.

Methods: This project uses a GA to fit a previously validated ABM of acute

systemic inflammation, the Innate Immune Response ABM (IIRABM) to

clinical time series data of systemic cytokine levels. The genome for the

GA is a vector generated from the IIRABM’s Model Rule Matrix (MRM),

which is a matrix representation of not only the constants/parameters

associated with the IIRABM’s cytokine interaction rules, but also the

existence of rules themselves. Capturing heterogeneity is accomplished by

a fitness function that incorporates the sample value range (“error bars”) of

the clinical data.

Results: The GA-enabled parameter space exploration resulted in a set of

putative MRM parameterizations which closely (though not perfectly)

match the cytokine time course data used to design the fitness function.

Conclusion: We present an HPC-enabled evolutionary computing

approach that utilizes a GA to calibrate a complex ABM to clinical data

while preserving biological heterogeneity. The integration of machine

learning/evolutionary computing, HPC and multi-scale mechanistic

modeling provides a pathway forward to more effectively represent the

heterogeneity of clinical populations and their data.

• Agent-Based Model of the human innate immune response to 

insult/infection/injury

• Spatially Explicit, Stochastic, Nonlinear

• Calibrated to represent clinical trajectory of patient with 

penetrative, infectious trauma

• Includes endothelial cells, macrophages, neutrophils, Th0, Th1, 

and Th2 cells, as well as their associated precursors

• Cytokine signaling network used to determine cellular

interactions and behaviors

• Used to investigate sepsis, a dysregulation of inflammatory 

signaling network dynamics, affecting ~1 million people/year 

with a mortality rate of approximately 40%

• There are two principal factors which lead to heterogeneity

in biological data: genetic variability between individuals

and stochastic responses to identical stimuli.

• In order for a computational model to provide maximum

utility, it must be able to recreate the same range of

variability in silico that is seen in vivo.

• To capture this heterogeneity, the dependence of model

output on both the model content (parameterization of

internal model rules) and model context (description of the

environment in which a biomedical simulation operates)

must be quantified.

Model rules are represented in  the model rule matrix (MRM): rules are rows, the magnitude of contributions 

from relevant entities (i.e., a cytokine concentration at a given location) are represented in the columns

• Hypothetical rule set: 
𝐼𝐿10𝑡+1 = 𝐼𝐿10𝑡 + 𝑇𝑁𝐹𝑡
𝑇𝑁𝐹𝑡+1 = −𝐼𝐿10𝑡 + 𝐼𝐹𝑁𝑔𝑡

֜
1 1 0
−1 0 1

• Decompose matrix into vector to apply genetic algorithm

• Set fitness function to maximize data coverage: 𝐹 = σ𝑖,𝑡 |max 𝑐𝑖,𝑡
𝑒 −max 𝑐𝑖,𝑡

𝑚 +𝑘 𝑅𝑒 − 𝑅𝑚|
• Employ nonviability filter: if a given MRM parameterization leads to death prior to the first experimental 

time point for all replicates, that parameterization is discarded prior to breeding  

• Employ elitism: on each generation, discard the least fit 10% of breeders, replace with most fit 10%

• Use standard continuous GA crossover operator: 
𝐶1,𝑖 = 𝛽𝑃1,𝑖 + (1 − 𝛽)𝑃2,𝑖
𝐶2,𝑖 = 𝛽𝑃2,𝑖 + (1 − 𝛽)𝑃1,𝑖

One thousand stochastic replicates of trajectories of the oxygen deficit (an inverse

measure of human health) are displayed for a single model parameterization and

identical injury. Trajectories diverge over time due to stochastic variabilities in

model responsiveness.

Ensemble Construction

• A single MRM parameterization is analogous to a single genome

–thus, all variability comes from inherent stochasticity

• In order to construct a more biologically realistic cohort, we

store any MRM parameterization discovered during the GA

optimization which lies within the boundaries of clinical data

Above, we compare the original rule matrix to the optimized

rule matrix. The optimized matrix has a much more

connected structure, and is a dense matrix, as opposed to

the sparse original rule matrix. There are not any matrix

elements with a value of 0 in the optimized matrix, though

there are many elements with comparatively small values.

This structure is similar to what is seen in experimental

bioinformatic studies; all of the cytokines in this network

appear to be connected to each other, at least to a small

degree, while a smaller number of strong connections

(which could also be considered correlations) provide the

majority of the influence on the system dynamics.

On the left, the ranges for each individual element in the

MRM are displayed at various generations during the GA.

On the right, total diversity, expressed as the sum of

ranges of matrix elements, is displayed as a function of

the generation. We use a mutation rate that increases

with time in order to combat premature convergence and

to increase the volume of space explored. An increasing

mutation rate combined with elitism and the ensemble

criterion ensures we keep the best solutions while

maximizing the volume of space explored.

In these figures, we present cytokine ranges that are

collected from either 50 in silico patients or 20 real

patients who experienced a >50% total surface area

burn. Results from the original model are in black;

results from the optimal model (according to our fitness

function) are shown in blue; results from the ensemble

model are shown in green; clinical data is shown in red.

The poor quality of the IL10 fit is due to the structure of

the data and fitness function – we only see appreciable

amounts IL-10 at a singe time point.

Conclusions

Machine-learned models are constrained by the data upon which they are trained. In order to develop clinically useful and generalizable ML

models, near-comprehensive data is required; however, it is not tractable to acquire this data experimentally. In order to capture, in silico, the

heterogeneity that is seen in actual biomedical systems, machine learning techniques (in this case, GA), can be used in conjunction with high-

performance computing and agent-based modeling to optimize a fitness function predicated upon capturing heterogeneity for an agent-based

model. Future work will focus on refining the construction of appropriate fitness functions such that viable parameterizations are not excluded.


