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Prediction of Dynamics & Regulation
A new approach to the law of mass action does not require rate parameters but instead uses 
chemical potentials (1). Due to the statistical formulation of the theory, the approach can directly 
integrate metabolomics and proteomics data.

u Governing Equations

u Equivalent Optimization
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The Marcelin Equation sets each of the decay rates of the forward and reverse forces to the same rate.
Assuming the same decay rate for all reactions removes any kinetic bottlenecks in phase space of the system
such that the dynamics are governed only by the thermodynamics and the energy surface is convex.

Overview
Experimental measurement or computational inference/prediction of the enzyme regulation needed in a metabolic pathway is hard problem. Consequently, regulation is known only for well-studied reactions of central 
metabolism in various model organisms. In this study, we use statistical thermodynamics and metabolic control theory as a theoretical framework to calculate enzyme regulation policies for controlling metabolite 
concentrations to be consistent with experimental values. A reinforcement learning approach is utilized to learn optimal regulation policies that match physiological levels of metabolites while maximizing the entropy 
production rate and minimizing the heat loss. The learning takes a minimal amount of time, and efficient regulation schemes were learned that either agree with theoretical calculations or result in a higher cell fitness 
using heat loss as a metric. We demonstrate the process on four pathways in the central metabolism of Neurospora crassa (gluconeogenesis, glycolysis-TCA, Pentose Phosphate-TCA, and cell wall synthesis) that each 
require different regulation schemes.

clock-controlled proteins

A maximum entropy approach will predict some
concentrations well above physiological levels.
Enzyme activities need to be adjusted until the
predicted and experimental measurements agree.
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n", 𝑛%, n&, Counts of Molecular Species

𝑣(, 𝑣), 𝑣* Unsigned Stoichiometric Coefficients

𝑘±- Forward and Reverse Rate Constants

K𝑖 Equilibrium Constants

𝐽012,- Reaction Flux

Reconstruction of the flux allows an optimization
routine to a steady state as well as the usual ODE
solver approach. Since the flux can be rewritten
using a maximum entropy assumption as the
Marcelin Equation, a steady state is achieved by
solving the coupled system

Given appropriate fixed boundary values for
metabolites, the system has a unique solution.

Steady state concentrations and fluxes can be
gleaned by solving a convex optimization problem:

u Agreement with Experiment

u Adjust Enzyme Activities using Metabolic Control Analysis
Deterministic Regulation. Postulating a linear response, the choice of which reaction is to be regulated at a given
steady state can be solved as an optimal control problem using Metabolic Control Analysis. Concentration control
coefficients, 𝐶-
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, represent the correlated sensitivity of the i-th metabolite and the j-th activity and can

predict beneficial regulation. Initially, activities aj for each reaction j is set to 1.0. Activities are then selected for
adjustment to achieve the goal Δ𝑆A19 ≤ 0. Reactions are scored for selection by normalizing the potential change
in metabolites by the current value
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Reactions chosen to be regulated maximize 𝑉4. The activity aj for reaction j is then adjusted and a new steady state
solution is found,
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Enzyme activities continue to be adjusted until Δ𝑆A19 ≤ 0.

The predicted concentrations are a maximum 
entropy prediction.

Regulation predictions for both
metabolic control (red ‘X’) and RL
(grey lines) based methods are
shown for each reaction (Figure 3).
Corresponding entropy production
rates or cell fitness from the
respective methods are compared
(Figure 2).

Reinforcement Learning Based Regulation

u Learning Regulation

u Calculation of Regulation
MCA presumes that the concentrations will change linearly with enzyme activity, but this is not necessarily true.
Reinforcement Learning (RL) can be used to learn optimal regulation instead.

Regulation is applied to reactions by changing the scalar valued activity of the j-th enzyme, 𝛼4 ∈ 0,1 , where activity
values of 0 and 1 represent complete reaction regulation and no enzyme regulation respectively. The activity for each
reaction j is applied as a multiplier to the net reaction flux.

• Net reaction flux: 𝐽4 = 𝛼4 𝐾4𝑄4
S − 𝐾4

S𝑄4 .
• Regulation step size: Δ𝛼4 = 𝛼4
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The agent (Figure 1) is meant to determine an optimal regulation policy that results in a maximal reward. This is 
achieved by utilizing an n-step SARSA algorithm and neural network function approximation for the value function. 

• States are represented as a set of regulation values: 𝛼 = [𝛼H, … 𝛼Z].
• Actions are defined by advancing a single MCA calculated step.
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