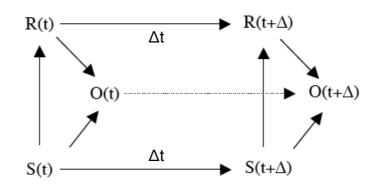
Learning PDE model reductions/ moment closures of stochastic reaction-diffusion dynamics

Eric Mjolsness

University of California, Irvine http://emj.ics.uci.edu

NIH 24 October 2019

Mapping: Model reduction



 $\Psi \mathcal{R} \simeq \mathcal{R} \Psi$

$$\frac{dp}{dt} = W \cdot p$$

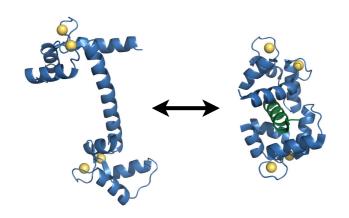
[Johnson, Bartol, Sejnowski, and Mjolsness. Physical Biology 12:4, July 2015]

Jonspatial:
$$\hat{p}(R,t) = \exp\left[-\sum_{\alpha} \mu_{\alpha}(t) V_{\alpha}(R)\right]/\hat{Z}(\mu(t))$$

- -Graph-Constrained Correlation Dynamics
- -warmup case for ...
- Spatial generalization: $\tilde{p}(n, \boldsymbol{x}, \boldsymbol{\alpha}, t) = \frac{1}{Z} \exp \left[-\sum_{k=1}^{K} \sum_{\langle s \rangle} \nu_k(\boldsymbol{x}_{\langle j \rangle}, \boldsymbol{\alpha}_{\langle j \rangle}, t) \right],$
 - -Dynamic Boltzmann distributions

E.g.: Synapse CaMKII Signaling Model

interacting particles with dynamical state information



[Pepke et al., PLoS Comp Bio, 2010]

[Phys Bio 2015] [Johnson PhD thesis 2012]. Original model: [Pepke et al. 2010]

(* CaM binding/unbinding free CaMKII *)
{CaM[n,c], CaMKII[num]} -> {Kk[n,c,0], CaMKII[num-1]},
 with[num*kon2[n,c,p0]/timeMultiplier],
{Kk[a0,b0,0], CaMKII[num]} -> {CaM[a0,b0], CaMKII[num+1]},
 with[koff2[a0,b0,0]If[a0>=0&&b0>=0,1,0]/timeMultiplier],

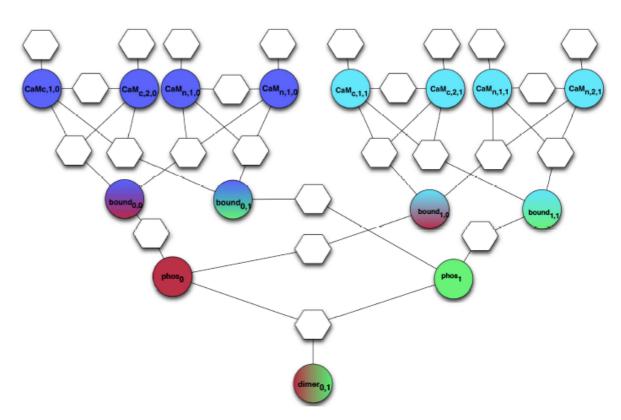


Figure 7.1: An MRF model of calcium binding, CaM/CaMKII interaction, and CaMKII dimerization.

GCCD: Target and Approximate Stochastic Dynamics

[Physical Biology 2015]

• Target stoch. dynamics: Chemical master equation

$$\frac{dp}{dt} = W \cdot p$$

$$i.e. \qquad \frac{d p([n_i])}{dt} \simeq \sum_r \rho^{(r)} \left(\prod_j (n_j - S_j^{(r)})_{\tilde{m}_j^{(r)}} \right) p([n_i - S_i^{(r)}]) - \sum_r \rho^{(r)} \left(\prod_j (n_j)_{\tilde{m}_j^{(r)}} \right) p([n_i])$$

• Approximation: Boltzmann/MRF + parameter ODEs

$$\hat{p}(R,t) = \exp\left[-\sum_{\alpha} \mu_{\alpha}(t) V_{\alpha}(R)\right] / \hat{Z}(\mu(t))$$

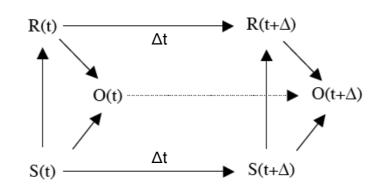
$$\frac{d}{dt}\mu_{\alpha} = f_{\alpha}(\mu|\theta) = \sum_{A} \theta_{A} f_{\alpha A}(\mu)$$

• Error criterion: L1-regularized sum squared error

$$S([\theta_A]) = \sum_{\alpha, t_{discr}} \left| \left| \frac{d\mu_{\alpha}(t)}{dt} \right|_{fit} [\theta_{\alpha A}] - \frac{d\mu_{\alpha}(t)}{dt} \right|_{BMLA} \right|^2 + \lambda \sum_{A} |\theta_A|$$

- Name: Graph-Constrained Correlation Dynamics
 - "Graph" = assumed MRF structure graph; "Correlations" = $\mu_c V_c(X_c)$

Mapping: Model reduction



 $\Psi \mathcal{R} \simeq \mathcal{R} \Psi$

$$\frac{dp}{dt} = W \cdot p$$

[Johnson, Bartol, Sejnowski, and Mjolsness. Physical Biology 12:4, July 2015]

• Nonspatial:
$$\hat{p}(R,t) = \exp\left[-\sum_{\alpha} \mu_{\alpha}(t)V_{\alpha}(R)\right]/\hat{Z}(\mu(t))$$

- -Graph-Constrained Correlation Dynamics
- -warmup case for ...

Spatial generalization:
$$\tilde{p}(n, \boldsymbol{x}, \boldsymbol{\alpha}, t) = \frac{1}{Z} \exp \left[-\sum_{k=1}^{K} \sum_{\langle j \rangle} \nu_k(\boldsymbol{x}_{\langle j \rangle}, \boldsymbol{\alpha}_{\langle j \rangle}, t) \right],$$

-Dynamic Boltzmann distributions

MaxEnt Problem

$$S = \int_0^\infty dt \; \mathcal{D}_{\mathcal{KL}}(m{p}|| ilde{m{p}}) \ \mathbf{w}/\; \mathcal{D}_{\mathcal{KL}}(m{p}|| ilde{m{p}}) = \sum_{m{n=0}}^\infty \int dm{x} \; m{p} \ln rac{m{p}}{ ilde{m{p}}} \ ilde{m{p}} \ \tilde{m{p}} \ ilde{m{p}} \ \tilde{m{p}} \ ilde{m{p}} \ \hat{m{p}} \ \hat{\m{p}} \ \hat{\m{p}$$

Variational problem

$$\frac{\delta S}{\delta F_k[\{\nu_k(\mathbf{x})\}_{k=1}^K]} = 0 \text{ for } k = 1, \dots, K \text{ at all } \mathbf{x}$$
 (12)

where the variation is with respect to a set of functionals

$$\dot{\nu}_k(\mathbf{x}) = F_k[\{\nu_k\}_{k=1}^K]$$
 (13)

... Higher-order calculus!

Variational Problem: Spatial systems

$$\frac{\delta S}{\delta F_{k}[\nu(\mathbf{x})]} = \sum_{k'=1}^{K} \int d\mathbf{x}' \int dt \frac{\delta S}{\delta \nu_{k'}(\mathbf{x}', t)} \frac{\delta \nu_{k'}(\mathbf{x}', t)}{\delta F_{k}[\nu(\mathbf{x})]} = 0 \quad (19)$$

$$\frac{\delta S}{\delta \nu_{k'}(\mathbf{x}', t)} = \left\langle \sum_{\langle i \rangle_{k'}^{n}} \delta(\mathbf{x}' - \mathbf{x}_{\langle i \rangle_{k'}^{n}}) \right\rangle_{p} - \left\langle \sum_{\langle i \rangle_{k'}^{n}} \delta(\mathbf{x}' - \mathbf{x}_{\langle i \rangle_{k'}^{n}}) \right\rangle_{\tilde{p}} \quad (20)$$
e.g. $k' = 1 : \left\langle \sum_{i=1}^{n} \delta(x_{i} - x') \right\rangle \text{ for all } x'$

$$k' = 2 : \left\langle \sum_{i=1}^{n} \sum_{j>i} \delta(x_{i} - x'_{1}) \delta(x_{j} - x'_{2}) \right\rangle \text{ for all } x'_{1}, x'_{2}$$

Need to choose a parametrization for functional!

Diffusion-inspired parametrization

$$p(x) \sim \exp\left[-\frac{(x-x_0)^2}{4Dt}\right] \rightarrow \exp[-\nu_1(x)]$$
 satisfies: $\frac{\partial \nu_1}{\partial t} = D\nabla^2 \nu_1(x) - D(\nabla \nu_1(x))^2$

$$\therefore F_{k}[\nu(\mathbf{x})] = F_{k}^{(0)} + \sum_{\lambda=1}^{k} F_{k\lambda}^{(1)} (\nabla \nu_{\lambda})^{2} + \sum_{\lambda=1}^{k} F_{k\lambda}^{(2)} (\nabla^{2} \nu_{\lambda})$$
 (20)

where: F = some funcs of ν on LHS

$$\frac{\delta S}{\delta F_k^{(0)}} = 0, \frac{\delta S}{\delta F_{k\lambda}^{(1)}} = 0, \frac{\delta S}{\delta F_{k\lambda}^{(2)}} = 0$$

PDE-constrained Optimization Problem

$$\operatorname{Minimize} \sum_{k'=1}^{K} \int_{0}^{\infty} dt \, \left(\left\langle \sum_{\langle i \rangle_{k'}^{n}} \delta(\mathbf{x}' - \mathbf{x}_{\langle i \rangle_{k'}^{n}}) \right\rangle_{p} - \left\langle \sum_{\langle i \rangle_{k'}^{n}} \delta(\mathbf{x}' - \mathbf{x}_{\langle i \rangle_{k'}^{n}}) \right\rangle_{\tilde{p}} \right) \frac{\delta \nu_{k'}(t)}{\delta F} \quad \textbf{(23)}$$

subject to PDE constraints for $\delta \nu_{k'}(t)/\delta F$.

Adjoint method BMLA-like learning algorithm

Algorithm 1 Stochastic Gradient Descent for Learning Restricted Boltzmann Machine Dynamics

1: Initialize

```
2:
           Parameters \boldsymbol{u}_k controlling the functions F_k(\boldsymbol{\theta};\boldsymbol{u}_k) for all k=1,\ldots,K.
           Time interval [t_0, t_f], a formula for the learning rate \lambda.
 3:
 4: while not converged do
           Initialize \Delta F_{k,i} = 0 for all k = 1, ..., K and parameters i = 1, ..., M_k.
 5:
           for sample in batch do
 6:
                 \triangleright Generate trajectory in reduced space \theta:
 7:
                 Solve the PDE constraint (27) for \theta_k(t) with a given IC \theta_{k,0} over t_0 \le t \le t_f, for all k.

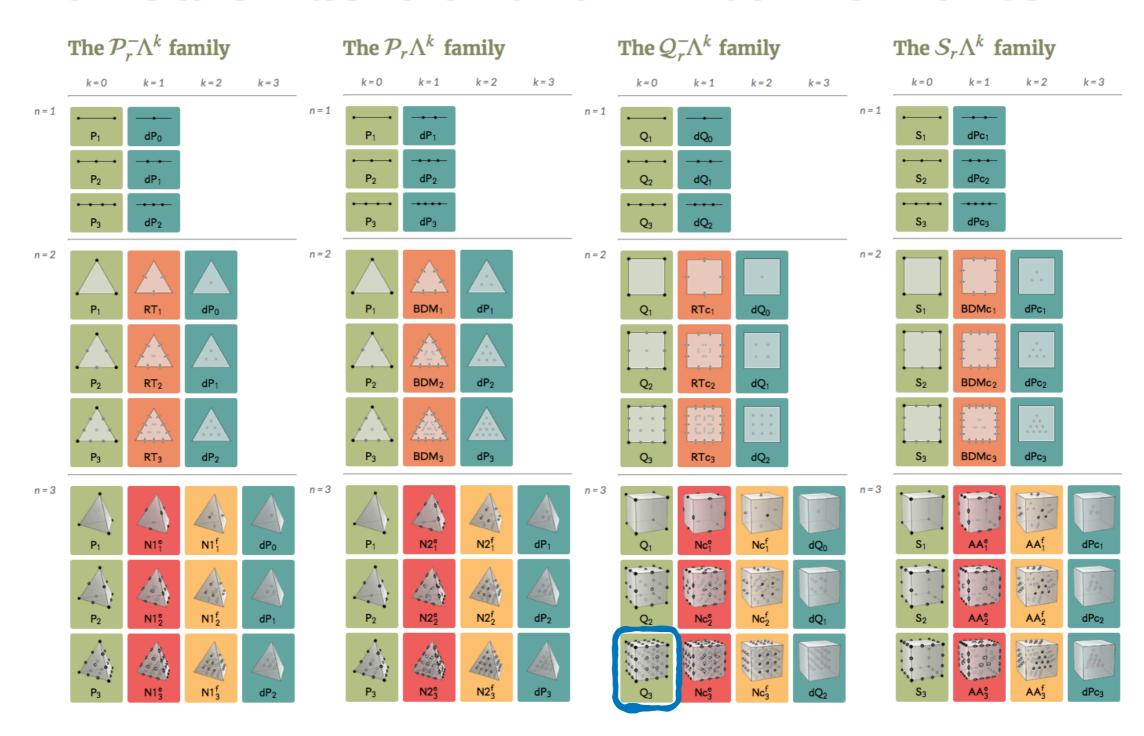
Wake phase.

d = F_k(\boldsymbol{\theta}(t); \boldsymbol{u}_k)
 8:
 9:
                 Evaluate moments \mu_k(t) of the data for all k, t.
10:
                 \triangleright Sleep phase:
11:
                 Evaluate moments \tilde{\mu}_k(t) of the Boltzmann distribution.

\Rightarrow Solve the adjoint system:

Solve the adjoint system (31) for \phi_k(t) for all k, t. \Rightarrow \frac{d}{dt}\phi_k(t) = \tilde{\mu}_k(t) - \mu_k(t) - \sum_{k=1}^K \frac{\partial F_l(\boldsymbol{\theta}(t); \boldsymbol{u}_l)}{\partial \theta_k(t)} \phi_l(t),
12:
13:
14:
                 ▶ Evaluate the objective function:
15:
                 Update \Delta F_{k,i} as the cumulative moving average of the sensitivity equation (30) over the batch.
16:
                                                                                                                                   \frac{dS}{du_{k,i}} \stackrel{\clubsuit}{=} - \int_{t}^{t_f} dt \, \frac{\partial F_k(\boldsymbol{\theta}(t); \boldsymbol{u}_k)}{\partial u_{k,i}} \phi_k(t)
           ▶ Update to decrease objective function:
17:
           u_{k,i} \to u_{k,i} - \lambda \Delta F_{k,i} for all k, i.
18:
```

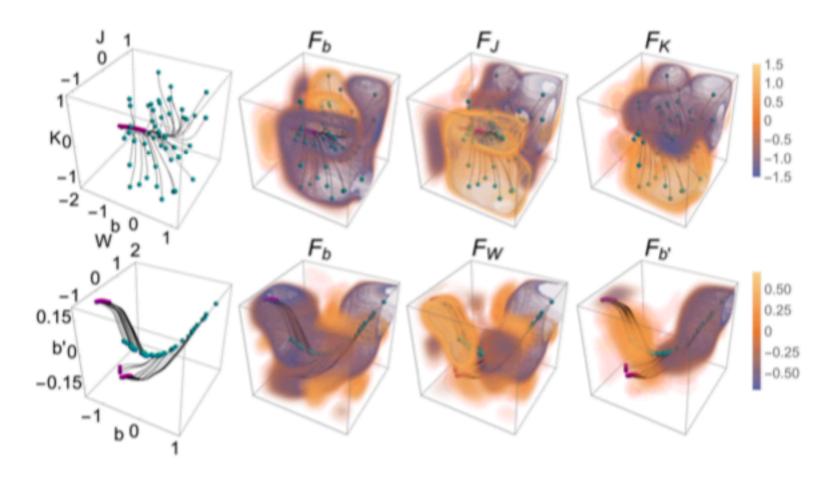
Periodic Table of the Finite Elements

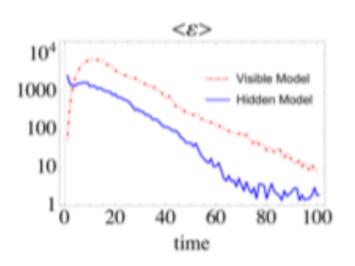


Benefit of Hidden Units

Network: fratricide + lattice diffusion

Learned DBD ODE RHS, without and with hidden units





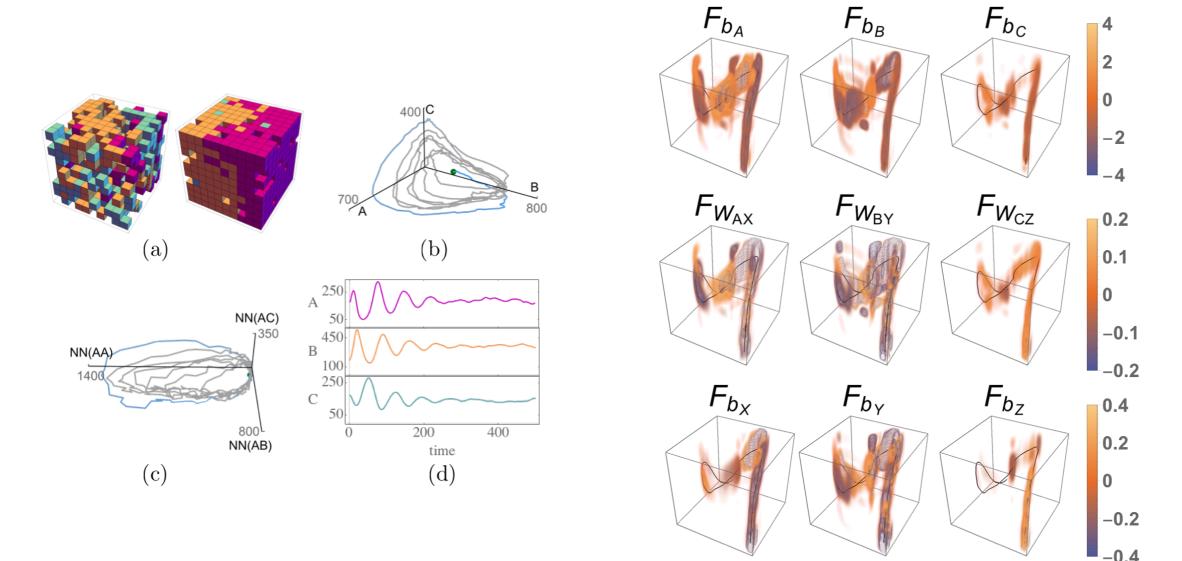
MSE of 4th order stats

FIG. 2. Top row: Learned time-evolution functions for the fully visible model (19), using the Q_3 , C_1 finite element parameterization (21) with $5 \times 5 \times 5$ evenly spaced cubic cells. Left: Training set of initial points (b, J, K) (cyan) sampled evenly in [-1, 1]. Stochastic simulations for each initial point are used as training data (learned trajectories shown in black, endpoints in magenta). Other panels: the time evolution functions learned. Bottom row: Hidden layer model (20) and parameterization (21) with the same number of cells as the visible model. Initial points are generated by BM learning the points of the visible model.

Rössler Oscillator in 3D

• Function:

Learned DBD ODE RHS:

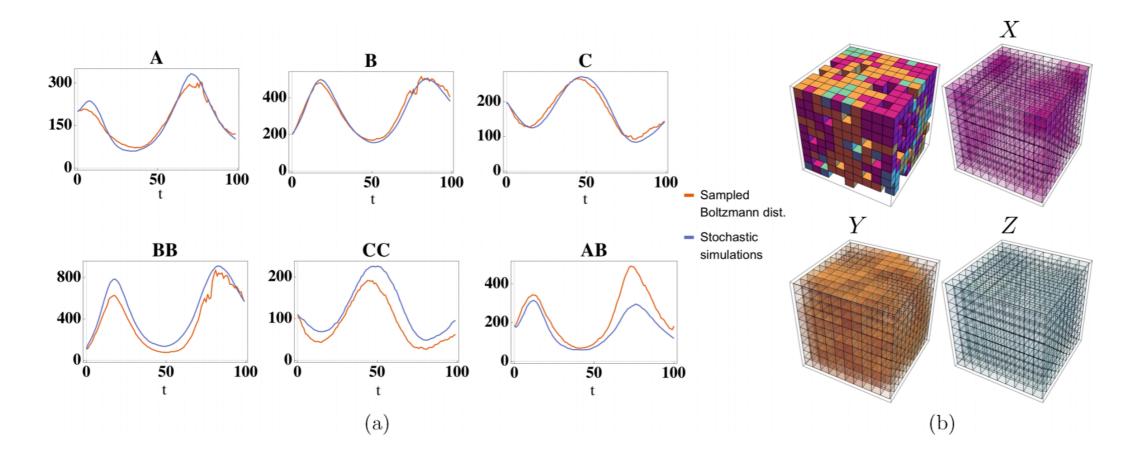


[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

Rössler Oscillator in 3D

Learned correlations:

Learned Configuration



Fields to Structures

$$\frac{dp}{dt} = W \cdot p$$

- Fields: PDE differential operator dynamics in W
- Dynamical Graph Grammars (DGGs):
 - operator addition of reactions, GGs, ODEs;
 - but what about PDEs?
- Approximately eliminate fields by:
 - Cell complexes in PDE (adaptive) meshing / FEMs, FVMs

MT fiber Stochastic Parametrized Graph Grammar

$$\begin{split} &(\bullet_1) \langle\!\langle (x_1,u_1) \rangle\!\rangle \longrightarrow (\ \bigcirc_1 \longrightarrow \bullet_2) \langle\!\langle (x_1,u_1),(x_2,u_2) \rangle\!\rangle \\ & \text{with } \hat{\rho}_{\text{grow}}([\text{tubulin}]) \mathcal{N}(x_1 - x_2; Lu_1, \sigma) \mathcal{N}(u_2; u_1/(|u_1| + \epsilon), \epsilon), \\ &(\blacksquare_1 \longrightarrow \bigcirc_2) \langle\!\langle (x_1,u_1),(x_2,u_2) \rangle\!\rangle \longrightarrow (\ \blacksquare_2) \langle\!\langle (x_2,u_2) \rangle\!\rangle \\ & \text{with } \hat{\rho}_{\text{retract}} \\ &(\bigcirc_1 \longrightarrow \bigcirc_2 \longrightarrow \bigcirc_3 \\ & \bullet_4 & \end{pmatrix} \langle\!\langle (x_1,u_1),(x_2,u_2),(x_3,u_3),(x_4,u_4) \rangle\!\rangle \\ & \longrightarrow \begin{pmatrix} \bigcirc_1 \longrightarrow \blacktriangle_2 \longrightarrow \bigcirc_3 \\ \bigcirc_4 & \end{pmatrix} \langle\!\langle (x_1,u_1),(x_2,u_2),(x_3,u_3),(x_4,u_4) \rangle\!\rangle \\ & \text{with } \hat{\rho}_{\text{bundle}}(|u_2 \cdot u_4|/|\cos\theta_{\text{crit}}|) \exp(-|x_2 - x_4|^2/2L^2) \\ &(\blacksquare_1 \longrightarrow \bullet_2) \langle\!\langle (x_1,u_1),(x_2,u_2) \rangle\!\rangle \longleftrightarrow \varnothing \quad \text{with } (\hat{\rho}_{\text{retract}}, \\ & \hat{\rho}_{\text{nucleate}}([\text{tubulin}]) \mathcal{N}(x; \mathbf{0}, \sigma_{\text{broad}}) \delta_{\text{Dirac}}(|u_1| - 1) \delta_{\text{Dirac}}(u_1 - u_2) \end{pmatrix} \\ &(\bullet_1) \langle\!\langle (x_1,u_1) \rangle\!\rangle \longleftrightarrow (\ \blacksquare_1) \langle\!\langle (x_1,u_1) \rangle\!\rangle \\ & \text{with } (\hat{\rho}_{\text{retract}} \leftarrow_{\text{growth}}, \hat{\rho}_{\text{growth}} \leftarrow_{\text{retract}}) \end{split}$$

MT fiber Stochastic Parametrized Graph Grammar

// (continued)

// Fiber collision, with several alternative discrete outcomes:

with
$$\hat{\rho}_{\text{bundle}}(|u_2 \cdot u_4|/|\cos \theta_{\text{crit}}|) \exp(-\gamma^2/2\epsilon^2)\Theta(\epsilon \leqslant \alpha \leqslant 1-\epsilon)$$

with
$$\rho_{\text{bundle}}(|u_2 \cdot u_4|/|\cos \theta_{\text{crit}}|) \exp\left(-\gamma^2/2\epsilon^2\right) \Theta(\epsilon \leqslant \alpha \leqslant 1-\epsilon)$$

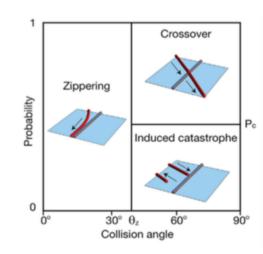
$$\longrightarrow \begin{pmatrix} \star_1 & \cdots & \ddots & \star_3 \\ \ddots & \star_4 & \cdots & \star_5 \end{pmatrix} \langle \langle (x_1, u_1), (l_2, u_2), (x_3, u_3), (l_4, u_4), (x_5, u_5) \rangle$$

with
$$\hat{\rho}'_{\text{bundle}}(|u_2 \cdot u_4|/|\cos \theta_{\text{crit}}|) \exp(-\gamma^2/2\epsilon^2)\Theta(\epsilon \leqslant \alpha \leqslant 1 - \epsilon)$$

$$\longrightarrow \left(\star_{1} - \circ_{6} - \star_{3} \right) \langle \langle \overset{(x_{1}, u_{1}), ((1-\alpha)x_{1} + \alpha x_{3}, u_{2}), (x_{3}, u_{3}), (l_{4}, u_{4}), \varnothing,}{(\alpha l_{2}, u_{2}), ((1-\alpha)l_{2}, u_{2}), (\varepsilon l_{4}, u_{4}), (x_{2} + \varepsilon l_{4}u_{4}), u_{4}} \rangle \rangle$$

with
$$\hat{\rho}_{\text{bundle}}''(|u_2 \cdot u_4|/|\cos \theta_{\text{crit}}|) \exp(-\gamma^2/2\epsilon^2)\Theta(\epsilon \leqslant \alpha \leqslant 1-\epsilon)$$

where
$$\gamma = -[(x_3 - x_1) \times (x_1 - x_5)]_z/[(x_3 - x_1) \times u_5]_z$$
 // rel. distance to intersection along u_5 $\alpha = -[(x_1 - x_5) \times u_5]_z/[(x_3 - x_1) \times u_5]_z$ // fractional location of intersection along u_2



[Chakrabortty et al. **Current Biology**

Cajete MT: First Light



\mathcal{J}

Why operator algebra yields algorithms

- Baker Campbell Hausdorff theorem
 - => operator splitting algorithms e.g. Trotter Product Formula ...

$$\lim_{n\to\infty} \left[e^{(t/n)H_0} e^{(t/n)H_1} \right]^n$$

- Time-ordered product expansions =>
 Stochastic Simulation Algorithm (SSA)
 - [EMj, Phys Bio 2013]

$$\begin{split} \exp(t \left(W_0 + W_1\right)) &= \exp(t W_0) \left(\exp\left(\int_0^t \exp(-\tau W_0) W_1 \exp(\tau W_0) d\tau \right) \right)_+ \\ &= \exp(t W_0) \left(\exp\left(\int_0^t W_1 (\tau) d\tau \right) \right)_+ \end{split}$$

- weighted SSA (wSSA) possible too

Algebra of Labelled-Graph Rewrite Rules

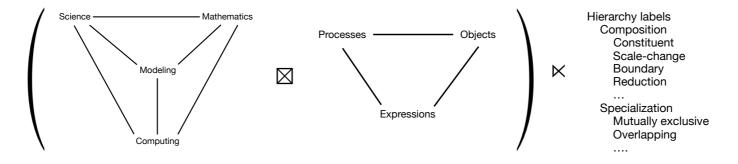
$$\hat{W}_{G^{r_2 \text{ in}} \to G^{r_2 \text{ out}}} \hat{W}_{G^{r_1 \text{ in}} \to G^{r_1 \text{ out}}} \simeq \sum_{\substack{H \subseteq G^{r_1 \text{ out}} \simeq \tilde{H} \subseteq G^{r_2 \text{ in}} \\ | \text{ edge-maximal}}} \sum_{\substack{h: H \stackrel{1-1}{\hookrightarrow} \tilde{H}}} \hat{W}_{G^{r_1 \text{ in}} \cup (G^{r_2 \text{ in}} \backslash \tilde{H}) \xrightarrow{h} G^{r_2 \text{ out}} \cup (G^{r_1 \text{ out}} \backslash H)}$$

$$\begin{split} & [\hat{W}_2, \hat{W}_1] = \left[\left(\begin{array}{c} \blacksquare_{1'} \longrightarrow \bigcirc_{2'} \right) \longrightarrow \left(\begin{array}{c} \blacksquare_{2'} \right) \text{, } \left(\begin{array}{c} \bullet_1 \right) \longrightarrow \left(\bigcirc_1 \longrightarrow \bullet_2 \right) \right] \\ & \simeq \left(\begin{array}{c} \blacksquare_{1'} \longrightarrow \bullet_1 \right) \longrightarrow \left(\begin{array}{c} \blacksquare_1 \longrightarrow \bullet_2 \right) \\ \bullet_{4'} & \bullet_{2'} \longrightarrow \circ_{3'} \\ \bullet_{4'} & \bullet_{2'} \longrightarrow \circ_1 \end{array} \right) \text{, } \left(\bullet_1 \right) \longrightarrow \left(\circ_1 \longrightarrow \bullet_2 \right) \right] \\ & \simeq \begin{pmatrix} \circ_{1'} \longrightarrow \circ_{2'} \longrightarrow \bullet_1 \\ \bullet_{4'} & \bullet_{2'} \longrightarrow \circ_{3'} \\ \bullet_{1'} & \bullet_{2'} \longrightarrow \circ_{3'} \\ \bullet_{1'} & \bullet_{2'} \longrightarrow \circ_{3'} \\ & \bullet_{2'} & \bullet_{1} \end{pmatrix} \text{ (fixely)} \\ & + \left(\circ_{1'} \longrightarrow \circ_{2'} \longrightarrow \bullet_1 \right) \longrightarrow \begin{pmatrix} \circ_{1'} \longrightarrow \bullet_{2'} \longrightarrow \circ_1 \\ \bullet_{2'} & \bullet_{1'} \\ \bullet_{1'} & \bullet_{2'} \longrightarrow \circ_1 \end{pmatrix} \text{ (high bending energy)} \end{aligned}$$

[EM, http://arxiv.org/abs/1909.04118]

"Tchicoma" Architecture for Mathematical Modeling

• Language meta-hierarchy: (a DAG with edge labels in a tree)

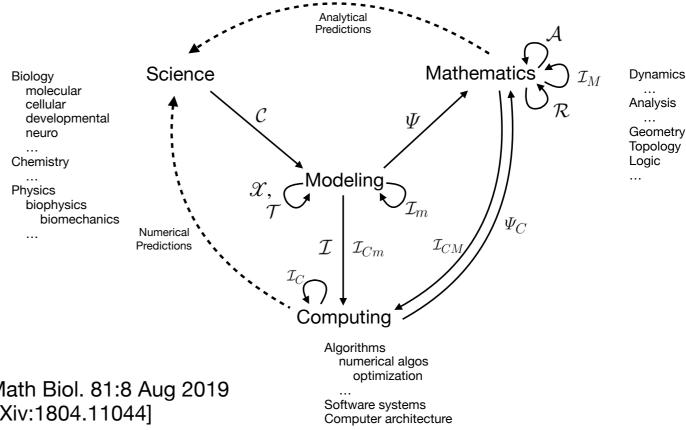


• Mappings therein:

respecting compositional structure

Features:

Enables problem-solving via chaining, theorem-proving **Foments abstraction** via commutation Decoupled, yet can be efficient



[EM, Bull. Math Biol. 81:8 Aug 2019 +arXiv:1804.11044

Conclusions

- Model reduction can be achieved by machine learning, in spatial stochastic models. Reaction/diffusion examples.
- Declarative modeling languages with operator algebra semantics can support generic model reduction.
- Morpho-dynamic spatial structures can be modeled by dynamical graph grammars with operator semantics. Bio-universal; scalability is in progress. MT examples.
- Model stacks are the key data structure for understanding complex bio systems.
 - They require model reduction and bio-universal modeling languages (perhaps as above).
 - They can intersect productively, and could be curated in a proposed conceptual architecture "Tchicoma".
 - "Intelligent Formal Methods for Stacks of Models InformCosm"
- In these ways, both symbolic and numeric AI can (and should!) be brought to bear on understanding complex biological systems.