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Introduction
Pattern formation is central to the developmental biological processes of any
multicellular organism. Identification of the PDEs governing pattern
formation delivers insights to the biophysics of developmental dynamics.
Approaches to data-driven discovery of PDEs
I Inference of the parameters in a known governing equation
I Learning the parameters that define an approximate model
I Learning the governing partial differential equations by identifying their

operators
I Symbolic regression by genetic algorithms M. Schmidt, H. Lipson, Science, 3, 81-85, 2009

I ”Physics-informed” deep neural networks
(incorporating the strong form in the loss function to learn parameters of known
operators) M. Raissi, et al., J. Comput. Phys., 378, 686-707, 2019

I Sparse regression S. L. Brunton, et al. Proc. Natl. Acad. Sci., 113, 3932-3937, 2016; S. H. Rudy, et al., Sci. Adv., 3, e1602614, 2017

Parabolic PDEs that model pattern formation in biophysics
I Diffusion-reaction equations following Schnakenberg kinetics
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I Cahn-Hilliard equation for segregation of cell types in tissues
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I Allen-Cahn equation for tissue patterning by nucleation and growth
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Identification of governing parabolic PDEs in
weak form

I General strong form for first-order dynamics:
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I The Galerkin weak form (using NURBS basis functions) leads to the
residual form Ri = 0, i = 1, . . . , N:∫
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Aim to findω for many operators in weak form!

I Examples of basis in the weak form
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Matrix-vector form of residual equations

I Target vector: Matrix containing operators in weak form:
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I Residual equation:

R = y − Ξω

Regression problem
I Findω to minimize the loss function, l = ||R||2:

ω = arg min
ω

l(ω)

Standard regression will result in a non-parsimonious solution forωwith
nonzero contributions in each component of this vector

I Penalization to drive pre-factors toward zero
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 LASSO-sparsity inducing

Selecting few relevant terms from large candidate set is challenging

Identification of operators via stepwise
regression

Stop

1 2 3 4 5
iterations

0

200

400

lo
ss

 fu
nc

tio
n

Low fidelity and noisy data
I Data generated by simulation on high fidelity mesh, but may be

subsampled by collection over a subset of nodes (lower fidelity mesh)

High �delity              Low �delity              

I Observed data Ĉ may be noisy

Ĉ = C + ε

I Noise is amplified through spatial gradient and time derivative.
I Lower fidelity data is favorable to smooth out the amplified noise.
I Higher fidelity data is favorable to capture sharp variations.

Results
I Candidate operators
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I Stem-and-leaf plots show active operators selected by stepwise regression
out of a set of 38 possible choices

Diffusion-reaction operators for two fields C1 and C2 using noise-free and noisy data.

Cahn-Hilliard operators for two fields C1 and C2 using noise-free and noisy data.

Key takeaways
I The weak form regularizes higher-order derivatives.
I The variational approach naturally delineates and identifies boundary

conditions.
We are working on identifying governing equations using real experimental
data that is:
I Sparse, being available at very coarse time steps.
I Incomplete, being only available over subdomains of the full field that are

uncorrelated with respect to time.
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