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Pattern formation is central to the developmental biological processes of any » Target vector: Matrix containing operators in weak form: » Data generated by simulation on high fidelity mesh, but may be
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» Symbolic regression by genetic algorithms M. schmidt, H. Lipson, Science, 3, 81-85, 2009 . A :
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> Sparse regression S. L. Brunton, et al. Proc. Natl. Acad. Sci., 113, 3932-3937,2016;  S. H. Rudy, et al., Sci. Adv., 3, 1602614, 2017

» Noise is amplified through spatial gradient and time derivative.

. C . » Find w to minimize the loss function, I = [[R]}>: » Lower fidelity data is favorable to smooth out the amplified noise.
Parabolic PDEs that model pattern formation in biophysics , . N . P
e s , , , L W = arg min [(w) » Higher fidelity data is favorable to capture sharp variations.
» Diffusion-reaction equations following Schnakenberg kinetics w
- S— Standard regression will result in a non-parsimonious solution for w with RESULTS
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> Allen-Cahn equation for tissue patterning by nucleation and growth
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» Stem-and-leaf plots show active operators selected by stepwise regression
IDENTIFICATION OF OPERATORS VIA STEPWISE out of a set of 38 possible choices
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IDENTIFICATION OF GOVERNING PARABOLIC PDESs 1N = / Diffusion-reaction operators for two fields C; and C; using noise-free and noisy data
WEAKFORM EZOO g 1 s10Nn-reaction operators 10 O 11e1ds (1 2 using noise-iree 018y .
(dp)] iteration 25 » iteration 25 ) iteration 25 ) iteration 25
)]
» General strong form for first-order dynamics: Q . " mm
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» The Galerki f ' RB is functi 1 h
6.3 Galerkin weak O.rm (using NURBS basis functions) leads to the Cahn-Hilliard operators for two fields C; and C; using noise-free and noisy data.
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0 » The weak form regularizes higher-order derivatives.
Aim to find w for many operators in weak form! » The variational approach naturally delineates and identifies boundary
conditions.
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