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Abstract Text: 

Introduction: We developed a multiscale model (MSM) incorporating dissipative particle dynamics (DPD) and coarse-

grained molecular dynamics (CGMD), to describe mechanotransduction events triggered by blood flow in cardiovascular 

pathologies which may induce initiation of thrombosis via flow-induced platelet activation1-6. This model, tightly coupled to 

extensive in vitro results of platelet motion under flow1,2, mechanical properties3,4, and shape change5, has been expanded to 

describe shear-induced platelet aggregation6 and adhesion. 

Materials and Methods: We developed three novel machine learning (ML) approaches for image segmentation, 

modeling in-vitro data and adaptive discretization in massive multiscale modeling. A semi-unsupervised learning method 

for platelet segmentation with attention to pseudopods and membrane tethers: DIC microscopy images of aggregating and 

adhering platelets were captured at up to 1000 fps, and processed to obtain platelets’ geometrical points as in vitro data. 

Then, a deep learning network for modeling in-vitro data: the platelets’ geometrical data points are meshed to determine 

contact area between aggregated platelets, and input into a neural network model to predict inter-platelet contact area (Fig. 

1). In the training set, we selected shear stresses of 1, 5 and 10 dyne/cm2. Physics-Informed Learning for Adaptive 

Discretization in Massive Multiscale Modeling: While MSM sufficiently describes details at disparate spatial scales, no 

effective algorithm exists for adapting temporal scales to these diverse spatial scales. We developed a novel state-driven 

adaptive time-stepping (ATS) algorithm that adapts time stepsizes to the underlying biophysical phenomena. Mesoscale 

DPD blood flow is simulated with μs-timescale and microscale CGMD platelets are modeled with ns-to-ps timescales. A 

ML method trains to adapt the time stepsizes. Particle positions and momenta are inputs, and phases are described by the 

attributes of states from inputs in first two layers- categorized by a neural network and labeled by a two-components 

vector: time stepsize and state examination frequency. Conceptually, ATS ML corresponds to coarse-graining in time. 

 

Figure 1: In vitro platelets adhesion experiments; MSM of mechanotransduction, platelet activation, recruitment 

aggregation and adhesion; and three machine learning schemes: (i) a deep learning network for predicting contact area 

between aggregated platelets; (ii) an unsupervised learning network for platelet segmentation with attention to 

pseudopods; and (iii) a recurrent learning network for more efficient massive multiscale simulations 



Results and Discussion: Our model describes biophysical properties of platelets down to nanoscales, with  membrane 

Young’s modulus of 31.2 μN/m and cytoplasm viscosity of 4.1 mPa·s. Mean normalized contact area model predictions 

and in vitro results (0.094±0.021 and 0.092±0.021, respectively) suggest that our ML-1 model accurately predicts the 

contact area for aggregated platelets, and is used in our multiscale modeling to validate the in silico results. The ATS 

algorithm was compared with traditional single time-stepping (STS) algorithm, along time of kinetic energy of two 

platelets (Fig 1, ML-2). The results in both algorithms are consistent with each other. Computing times using ATS for 

different phases were cut by 20~75%.  

Conclusions: Our computationally affordable, highly resolved, and validated multiscale modeling framework provides a 

potentially predictive platform to describe flow shear-induced activation, aggregation, and adhesion down to the 

nanoscales. Our novel ML models can be used to validate simulation predictions and also can improve the modeling 

efficiency. Ongoing simulations and experiments evaluate aggregation events with multiple platelets and incorporate 

GPIbα-vWF interactions for adhesion at moderate to high shear stresses. Our framework can be used to test new anti-

platelet therapeutic approaches that increase platelet shear resistance. 
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Table: 10 Simple Rules of Model Credibility Gained 
Rule 1. Define context clearly Our DPD-CGMD models are designed to reflect platelet properties and dynamics 

under shear stresses found in blood flow through diseased vessels and 
cardiovascular devices.  

Rule 2. Use appropriate data We ensure that all parameters and input variables are based on published and in-
house in vitro observations. If any parameters cannot be validated (due to lack of 
available data or techniques), other model variables are monitored to ensure 
accurate reflection of platelet biology. Machine learning models are developed to 
validate in silico predictions with in vitro sparse and noisy data. 

Rule 3. Evaluate within context Numerical simulations are performed under physiological and pathological shear 
stresses relevant to blood vessels (normal/diseased) and blood-recirculating 
cardiovascular devices, with appropriate blood properties (i.e. viscosity, 
temperature). 

Rule 4. List limitations explicitly Numerical simulations are accurate in the context of published data and in-house 
in vitro observations. We do not make conclusions beyond the experimentally 
validated conditions. Further limitations are due to capacity of the software to 
model biological observations and limitations of the HPC resources used. 

Rule 5. Use version control All experimental data are traced by their creation date and record the 
experimenters’ names. All DPD-CGMD files track the creation date. 

Rule 6. Document adequately Simulation codes/model markups and changes within are tracked and shared 
among the simulation group. All experimental data are stored in a database 
(currently in video and spreadsheet format) and shared among all team members, 
allowing interfacing with numerical software. Protocols are shared and updated via 
Stony Brook’s Google Drive services. 

Rule 7. Disseminate broadly Simulation software and data/experimental database is currently shared via 
Google Drive, and we are exploring sharing broadly via the Google Cloud Platform. 
These items are also presented during regular meetings and national/international 
conferences. 

Rule 8. Get independent 
reviews 

Our algorithms and experimental data will be shared with fellow IMAG researchers 
with similar work (i.e. Drs. Alber and Karniadakis) for independent evaluation. 

Rule 9. Test competing 
implementations 

Within our group, we test the efficiency of various iterations of our DPD and CGMD 
codes to select the most appropriate model parameters (i.e. Morse potential, bond 
force parameters, etc.). Due to the uniqueness of our approach, we do not have an 
external algorithm for direct comparison. 

Rule 10. Conform to standards While there are no set standards for our platelet-based experiments, we follow 
commonly followed practices for blood/platelet preparation, microscopy, and 
statistical analysis as published in relevant experimental journals. 

 

 


