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MULTISCALE PROBLEM: incorporated coarse-grained molecular dynamics

(CGMD) and dissipative particle dynamics (DPD) to describe platelet

mechanotransduction induced by blood flow in cardiovascular pathologies

which may initiate thrombosis1-6. Because of the complex nature of this

dynamic process that covers many spatio-temporal scales, such modeling

may become computationally prohibitive even when employing the strongest

HPC resources available. We have developed three Machine Learning (ML)

approaches for optimizing the modeling efficiency and its experimental

validation for significantly reducing the computational costs to achieve both:

Reduced computational costs without loss of accuracy.

ML-1: Machine Learning for Synthesizing Sparse In Vitro Data (V&V)

Multiscale Challenge: Sparse in-vitro data to validate in-silico predictions
Goal: To accurately predict the contact area for aggregated platelets under low 
shear stresses (0~10 dyne/cm2)
Application: Used in our multiscale modeling to validate the in silico results

ML- 2: Machine Learning for Adaptive Discretization in Massive Multiscale

Multiscale Challenge: No effective algorithm for adapting temporal scales to the 
diverse spatial scales
Goal: Cut computing times for different simulation phases by 20~75%
Application: ‘Coarse-Graining’ in time scales to cut unnecessary computational 
steps without losing significant accuracy

NEURAL NETWORKS WE EMPLOYED: Deep Neural Network (DNN); Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), U-Net, Mark R-CNN.

CONCLUSIONS: Our computationally affordable, highly resolved, and validated multiscale modeling framework provides a potentially predictive platform to

describe flow shear-induced activation, aggregation, and adhesion down to the nanoscales. Our novel machine learning models can be used to validate

simulation predictions and also can improve the modeling efficiency. Ongoing simulations and experiments evaluate aggregation events with multiple platelets

and incorporate GPIbα-vWF interactions for adhesion at moderate to high shear stresses. Our framework can be used to test new anti-platelet therapeutic

approaches that increase platelet shear resistance. We’re building a AI-based approach for convergence of experiment, theory and computational sciences.

Project Summary Three Machine Learning AI-Models and Results

� Multiscale Modeling: A MD model describes intracellular components such as cytoskeleton,

cytoplasm and protrusible actin filaments at molecular scales. A CGMD model describes (1) dynamic

interaction between deformable platelets and blood flows; (2) the inter-platelet interaction: the recruitment

aggregation through the αIIbβ3-Fibrinogen binding and the flipping of adhered platelets on vWF-coated

blood vessels through the GPIbα-vWF binding. Last, in silico predictions are made through computer

simulations and learned to produce to a prediction model by machine learning methods.

� In Vitro Experiments: Platelet flowing, flipping, recruitment aggregation and adhesion

experiments are conducted under a variety of stresses. Platelet geometrical data are segmented with

attention to boundaries: pseudopods and membrane tethers. Last, in vitro measures are learned to produce

a synthetic model by machine learning methods.

� Interfacing In Vitro and In Silico (between macroscale and nanoscale): Formulate

a multi-objective optimization problem by combining the in-vitro synthetic AI-model and the in-silico

prediction AI-model. Solving the problem yields the physics constants for unveiling underlying mechanisms.

� Machine Learning Models in this Framework:
� Extract platelets’ discrete geometrical data from in vitro images.

� Learn a synthetized model from sparse and noisy data.

� Adapt temporal scales to diverse spatial scales under different dynamics.
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MULTIPLE TIME SCALE ALGORITHM FOR MULTIPLE SPACE SCALE MODEL:

Machine Learning-Guided Time Stepping Algorithms: MSM + RNN framework
• Multiple Time Stepping (MTS) : Four-Level Integrator Algorithm

• Recurrent Neural Network (RNN) : Data-Driven Online Learning Algorithm

� A Semi-Unsupervised Machine Learning System for Platelet 

Segmentation at Submicron Resolution

� Prediction Model for Platelet Adhesion Under Flow Modeling In-Vitro Data

Statistics of in-vitro results and Comparison (31 samples, 14,000 data points).

� Addressing the CPMS Ten Simple Rules

Rule 1. Define context Models are designed to reflect platelet properties and dynamics found in disease- and device-associated blood flow

Rule 2. Use 

appropriate data 

Parameters and input variables are based on published and in-house in vitro observations. If any parameters cannot 

be validated , other model variables are monitored to ensure accurate reflection of platelet biology 

Rule 3. Evaluate within 

context 

Simulations are performed under physiological and pathological shear stresses relevant to blood vessels and blood-

recirculating cardiovascular devices, with appropriate blood properties (i.e. viscosity, temperature). 

Rule 4. List limitations 

explicitly 

Numerical simulations are accurate in the context of published data and in-house in vitro observations. We do not 

make Further limitations are the capacity of the software to model biological observations and \HPC resources

Rule 5. Version control All experimental data are traced by their creation date and generators. All DPD-CGMD files track the creation date.

Rule 6. Document 

adequately 

Simulation codes/model markups are tracked and shared among the simulation group. All experimental data are 

stored in a video/spreadsheet database and shared among all team members via Stony Brook’s Google Drive service

Rule 7. Disseminate 

broadly

We are exploring sharing simulation software and data/experimental data broadly via the Google Cloud Platform. 

These items are also presented during regular meetings and national/international conferences.

Rule 8. Get 

independent reviews 

Our algorithms and experimental data will be shared with fellow IMAG researchers with similar work (i.e. Drs. Alber

and Karniadakis) for independent evaluation. 

Rule 9. Test competing 

implementations 

We test the efficiency of various iterations of our DPD and CGMD codes to select the most appropriate model 

parameters. Due to the uniqueness of our approach, we do not have an external algorithm for direct comparison. 

Rule 10. Conform to 

standards

While there are no set standards for our platelet-based experiments, we follow commonly followed practices for 

blood/platelet preparation, microscopy, and statistical analysis as published in relevant experimental journals. 

COARSE-GRAINING IN TIME

• Better resolution 

for platelet 

boundaries

• Higher sensitivity 

for pseudopodia

• Accurately identify 

membrane tethers


