Physics-informed Machine Learning: A very gentle introduction

Ilias Bilionis
Predictive Science Laboratory
School of Mechanical Engineering
Purdue University

www.predictivescience.org

Predictive Science Laboratory

Murali Rajasekharan Pillai

Vanessa Kwarteng

Salar Safarkhani

Nimish Awalgaonkar

Atharva Hans

Ali Lenjani

Rohit Tripathy

Alana Lund Sharmila Karamuri

Alex Alberts

Andres Beltran

Physics-informed Machine Learning Subgroup

Three basic problems that we would like to be able to solve.

The Uncertainty Propagation Problem (reconstructive surgery)

2.5 percentile

Table 1 Range of HGO parameters based on Annaidh et al. (2012) and Tonge et al. (2013)

Parameter	meter Range	
μ (MPa)	[0.004774, 0.2014]	0.04498
k_1 (MPa)	[0.000380, 24.530]	4.9092
k_2 (–)	[0.133, 161.862]	76.64134

Stress statistics

Inverse Problem Example (Cerebral aneurysm)

Melissa C. Brindise, Sean Rothenberger, Benjamin Dickerhoff, Susanne Schnell, Michael Markl, David Saloner, Vitaliy L. Rayz, Pavlos P. Vlachos, Multi-modality cerebral aneurysm haemodynamic analysis: *in vivo* 4D flow MRI, *in vitro* volumetric particle velocimetry and *in silico* computational fluid dynamics **16** *J. R. Soc. Interface* http://doi.org/10.1098/rsif.2019.0465

We know how to pose these problems mathematically!

We just can't solve them...

Common Solution Approaches and Their Computational Intractability

All problems can, in principle, be solved by Monte Carlo sampling.

Infeasible to do directly with physical simulator.

Idea -> Replace the simulator with a surrogate model.

Problem -> Curse of dimensionality.

IDEA 1: Use Deep Neural Networks (DNN) to Represent the Response Surface

- Universal function approximators.
- Layered representation of information.
- Tremendous success in high-dimensional applications such as *image* classification, autonomous driving.
- Availability of libraries such as tensorflow, keras, theano, PyTorch, caffe etc.

Tripathy, R. K.; Bilionis, I. Deep UQ: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty Quantification. Journal of Computational Physics 2018, 375, 565–588. https://doi.org/10.1016/j.jcp.2018.08.036.

IDEA 2: Get rid of PDE Solver

- Lagaris et al., 1991
- Raisi, Predikaris, Karniadakis, 2019.
- {Raisi, Perdikaris, Karniadakis, Zabaras}* {2018, 2019}.
- Karumuri, Tripathy, Bilionis, Panchal, 2019.
- •

Illustrative Uncertainty Propagation Example With Physics-Informed DNN

Karumuri, S.; Tripathy, R.; Bilionis, I.; Panchal, J. Simulator-free Solution of High-Dimensional Stochastic Elliptic Partial Differential Equations Using Deep Neural Networks. Journal of Computational Physics 2019 (under review). https://arxiv.org/abs/1902.05200.

Stochastic Elliptic Partial Differential Equation

PDE:

$$\nabla(a(\mathbf{x})\nabla u(\mathbf{x})) = 0,$$

$$\mathbf{x} = (x_1, x_2) \in \Omega = [0, 1]^2,$$

Boundary conditions:

$$u = 0, \forall x_1 = 1,$$

$$u = 1, \forall x_1 = 0,$$

$$\frac{\partial u}{\partial n} = 0, \forall x_2 = 1.$$

Uncertain conductivity:

CIENCE LABORATORY

Representing the Solution of the Stochastic PDE as a DNN

How to turn the PDE into a loss function? Integrated Squared Residual

- Move all PDE terms to the left hand side.
- Square and integrate over space/time.
- Take expectation over random parameters.
- Minimize what you get over the space of DNNs subject to any boundary conditions.

$$J[u] = \mathbb{E}_{\xi} \left[\int_{[0,1]^2} (\nabla \cdot (a(x,\xi)\nabla u))^2 dx \right].$$

Works, but may have lots of local minima...

Can we do better?

How to turn the PDE into a loss function? Energy-based Residual

- Write down energy functional for system.
- Take expectation over random parameters.
- Minimize what you get over the space of DNNs subject to any boundary conditions.

$$J[u] = \mathbb{E}_{\xi} \left[\int_{[0,1]}^{2} a(x,\xi) \| \nabla u \|_{2}^{2} dx \right].$$

Energy-based loss is better because you can often prove uniqueness of solution!

Integrated Square Residual vs Energy Loss

PREDICTIVE

Numerical Examples: Point-wise Predictions

PREDICTIVE

Numerical Examples: Point-wise Predictions

Numerical Examples: Point-wise Predictions

Ending Remarks

- Lot's of nuances that did not talk about (see paper).
- Can we ditch traditional solvers completely?
- How to pose inverse problems?
- How to pose design problems?
- Best DNN structures?
- Best optimization algorithms?
- Bayesian formulation?

Thank you ibilion@purdue.edu

But how do I do the integrals?

- You don't have to do the integrals.
- All you need is the ability to sample:
 - uniformly in spatial domain
 - random parameters
- This is sufficient to construct stochastic algorithms that provably converge to a local minimum of the loss (Robbins-Monro, 1956).

Numerical Examples: Results Summary

Datasets		L	n	Number of	\mathcal{E}	Number of train-
				test samples		able parameters θ
GRF ℓ_x [0.05, 0.08]	3	2	350	2,000	4.45%	1,096,901
Warped GRF	5	2	300	1,000	4.68%	1,211,401
Channelized field		2	300	512	5.30%	850,201
Multiple length-scales GRF	3	2	500	9,000	3.86%	2,017,001

Numerical Examples: One DNN for all fields?

PREDICTIVE

Numerical Results: Transfer Learning

Trained on GRF with multiple length scales predicting on other:

