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To make a theory of cognition in the brain we need

• Write a set of concise equations that we can understand
computagtionally.

• To map smoothly between cognitive models and activity of
many neurons.

• To have this theory apply across different “silos” of
computational cognitive neuroscience.

Howard & Hasselmo (2020, arXiv)

http://sites.bu.edu/tcn/files/2020/04/LaplaceReview-arXiv.pdf
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Overview

• Theory for coding information as
functions via Laplace transform/inverse
pairs.

• Neurons are not the atom: Populations
are

• Predictions of the theory are confirmed
for functions of time in EC/hippocampus

• Can build cognitive models for memory,
navigation, evidence accumulation



populations and functions time abstract spaces

Representing functions with populations of neurons

• Continua distributed
across neurons

• f̃ (
∗
x) estimates f (x).

• Laplace domain
F (s) = Lf (x)
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Populations of neurons

• Individual neurons in F (s) have exponential receptive
fields indexed by their rate constant s.

• Individual neurons in f̃ (
∗
x) are indexed by the center of their

receptive field
∗
x

• F (s) is the Laplace transform of f and this has important
computational implications.
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What would f̃ (
∗
τ) look like in the brain?

Hippocampal Neurons Fire at Successive Times in Each
Trial Period
Figure 2 illustrates the firing patterns of representative neurons
active in each period. A total of 215 neurons (65% of the total
recorded) were active in 1 or more periods (128 or 59% in more
than 1 period). Of the 99 neurons (30% of the total recorded)
activatedduring theobject period, abroad rangeof firingpatterns
was observed, differing in onset time and maximum firing rate
(Figure 2, column 1). Some neurons had phasic responses
within the first 500 ms, and others activated later with responses
sustained to the end of that period. The 175 neurons (53% of
the total recorded) that fired during the delay were typically
striking in their selectivity to specific moments in the delay (Fig-
ure 2 column 2 depicts the firing patterns of 7 simultaneously
recorded neurons). Finally, the 93 neurons (28% of the total
recorded) that responded during the odor period also fired at
successive times, and the magnitude and pattern of activation
differed considerably (Figure 2, right column). Of these, 48
(52%) responded differentially depending on whether the odor
period was followed by a go or nogo response (17 more strongly
on go trials and31more strongly onnogo trials; theseproportions
did not significantly differ; binomial test, two-tailed; H0: p = 0.5;
p = 0.06).

Neuronal Ensembles Signal Time, as well as Location
and Behavior, during the Delay Period
We call the neurons that become active during the temporal gap
between object and odor presentations ‘‘time cells’’ because,
similar to hippocampal ‘‘place cells’’ that fire when the rat is at
specific loci in a spatially defined environment, time cells fire at
successive moments within a temporally defined period. This

characterization of these cells is most striking in larger ensem-
bles of neurons recorded simultaneously. Figures 3A–3D illus-
trate averaged normalized firing rates across all trials from four
representative recording sessions for each rat, including only
cells that met a minimum criterion for delay activity. In each
case the mean peak firing rate for each time cell occurred at
sequential moments, and the overlap among firing periods
from even these small ensembles of time cells bridges the entire
delay. Notably, the spread of the firing period for each neuron
increased with the peak firing time, which might reflect an accu-
mulated error in timing from the outset of the delay (e.g., Gibbon
et al., 1984), nonlinear time coding (e.g., Staddon and Higa,
1999), or both. At the ensemble level, the neural population in
each session strongly encoded the time passed between
moments in the delay (Figure 4A; linear regression F(7, 29) =
10.05; p < 0.001), similar to our previous report of population
coding of sequential events (Manns et al., 2007; see Supple-
mental Experimental Procedures available online).
Location, head direction, and running speed could also

account at least in part for the apparent temporal coding

object period ( 1.2 sec )

delay period ( 10 sec )

odor period ( 1.2 sec )

Figure 1. The Trial Structure for Object-Delay-Odor Sequences
The succession of events on each trial included an object period when the rat

explored one of two objects, a delay period, and an odor period, when the rat

sampled and responded to one of two odors. Green shape illustrates an

object, brown circle illustrates an odor cup, and horizontal bars indicate

removable walls that constrained the rat within each component of the

apparatus during successive trial periods.
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Figure 2. Hippocampal Neurons Activate at Successive Times
during Each Trial Period
Raster plots for example trials and PSTHs for the entire session are shown for

seven example neurons in each trial period. In the odor period, data are

separated for go (green) and nogo (red) trials.

Neuron

Time Cells in the Hippocampus

738 Neuron 71, 737–749, August 25, 2011 ª2011 Elsevier Inc.

Time

MacDonald, et al., 2011

• “Time cells” are compressed.
• Different stimuli trigger different

sequences.
• Hippocampus (CA1, CA3, DG) in

rodents
• . . . and monkeys (Cruzado, et al.,

bioRxiv)
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Laplace transform of time in monkey EC
Bright, Meister, Cruzado, Tiganj, Howard and Buffalo, (bioRxiv)

(See also Tsao et al., (2018, Nature)
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Time in EC and hippocampus

• Populations in entorhinal cortex (LEC) estimate F (s) for
functions of time.

• Populations of time cells in hippocampus (CA1,CA3,DG)
estimate functions of time

• These populations are one synapse away: f̃ (
∗
τ) = L-1

k F (s)
• This frames systems/computational neuroscience

questions about this structure.
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Functions of space in hippocampus and MTL

dF (s)
dt

= α(t) [−sF (s) + f (t)]

α(t) = dx/dt ; f (t) is landmark contact
Border cells/place cells
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Navigating in a Laplace decision space
Howard, Luzardo & Tiganj (2018, Comp. Brain & Behav.)

Diffusion model (Ratcliff 1978) for evidence accumulation:

Populations of leaky integrator neurons with a spectrum of leak
rates (Koay, Thiberge, Brody & Tank, 2019; bioRxiv))
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Decision spaces

• We can generalize from time to any variable for which we
have the time derivative.

• Makes predictions about border/place cells,
trajectory/splitter cells, etc in the MTL.

• We can model abstract decision spaces and numerosity
• Theory maps directly onto behavioral diffusion model and

also neurophysiology.
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Summary

• We can build cognitive models and describe neural
populations with the same equations . . .

• . . . across domains of cognitive neuroscience.
• The signature of the theory is heterogeneity in RFs
• We’re working to generalize to N-D, unify other domains of

computational cognitive neuroscience, and develop AI
applications.
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