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Multiscale Mechanics of 
Bioengineered Tissues

MISSION:  To develop a modeling platform 
to describe the continuum-level mechanical 
behavior of an engineered tissue based on 

its microscopic-scale architecture

• Mark Shepherd, RPI
• Jan Stegemann, 

RPI
• Joe Flaherty, RPI

• Victor Barocas, UMN
• Bob Tranquillo, UMN



Matching Model to Scale

10-2 m

10-6 m

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Current and Planned Work

• Incorporate multiscale
model into adaptive
framework

• Challenges for the
upcoming year:
– Better physical model
– Multiple components
– Cells
– Spatial inhomogeneity
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Adaptive MultiAdaptive Multi--Scale Model Simulation, Scale Model Simulation, 
Reduction and Integration for Cardiac Reduction and Integration for Cardiac 

Muscle PhysiologyMuscle Physiology
J. B. J. B. BassingthwaighteBassingthwaighte, L. E. Atlas, H.J. Chizeck, H. , L. E. Atlas, H.J. Chizeck, H. QianQian

University of WashingtonUniversity of Washington

Motivation: Multiscale modeling 'on the fly'  (that is, in real 
time) 

• Data-driven, real-time predictive  model  (for 
diagnosis, treatment, monitoring)  
• Potential applications: in the operating room, the 
intensive care unit or (in the long term) for ambulatory 
use
• We need multiple levels of model reduction
• We want this process to be as fast as possible with 
specified accuracy and robustness.



Key elements of our approach:

1. Set of models (of different spatial and/or temporal   
scales) and software for simulating them

• JSim modeling environment and extensions
2. Method of moving to a more complex model or submodel, 
during simulation
3. Method of moving to less complex model or submodel, 
during simulation
4. Detecting when an increase complexity is necessary (and 
for which submodels)
5. Detecting when a decrease in model or submodel
complexity is acceptable



Planned Work and Outcomes
1. Algorithms for Changing Model Complexity

• Approach involves use of constrained parameter identification
• Constraints (equality and inequality), on relationships of 

variables and on allowable parameter values
2. Algorithms for Detecting When to Change Model Complexity

• Approaches under investigation include SPRTs, and various 
machine intelligence methods

3. Demonstration Examples
• Models, simulations, algorithms
• Cardiovascular system 

4. Documented Software Package
5. Dissemination

Model CO drives the model BP, to match the 
observed aortic BP. Validation of the model is shown 

by the match between model and observed CO. 



PI: Daniel Beard
Title: Multiscale Modeling of the Heart in 
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Disease

Institution: Medical College of Wisconsin
Funding Agency: NIH/NIBIB
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Cabrera, Marco E.   Time Course of Metabolic Adaptations during Loading and Unloading

Introduction

Chronic lack of a mechanical stimulus on “weight-
bearing” muscles of astronauts during prolonged 
space travel leads to alterations in skeletal muscle 
structure, metabolism, and function.

Alterations span from 
Cellular (expression MHC isoforms, I-IIa)
Skeletal Muscle Fibers (CSA, protein content)
Muscle (strength, endurance, insulin resistance)
Organism (work capacity)

Cabrera, Marco E. Time Course of Metabolic Adaptations during Loading and Unloading



Cabrera, Marco E.   Time Course of Metabolic Adaptations during Loading and Unloading

Biomedical Significance

The chain of events 
linking alterations at 
cellular, tissue, and 
organism level are 
not fully understood.
Integrate multi-scale 
events represents

Challenge
Opportunity

for computational 
physiology

Cabrera, Marco E. Time Course of Metabolic Adaptations during Loading and Unloading



Cabrera, Marco E.   Time Course of Metabolic Adaptations during Loading and Unloading

Specific Aims and Long-term Goal

Develop multi-scale model of skeletal muscle metabolism
Cellular biochemical processes to muscle fibers 
Muscle fibers (I, IIa, IIb, IIX) to whole muscle
Skeletal muscle + other organs metabolism to whole body function

Predict integrated response of 
muscle fibers
skeletal muscle
whole body 

at rest and during exercise, after periods of space travel.

Long-term Goal: Develop an aspect of the 
“Metabolome” component of the “Digital Astronaut”

Cabrera, Marco E. Time Course of Metabolic Adaptations during Loading and Unloading
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A stochastic Molecular Dynamics method for multiscale

modeling of blood platelet phenomena

•Multiscale Simulation of Arterial Tree on TeraGrid

•PIs: G.E. Karniadakis, P.D. Richardson, M.R. Maxey

•Collaborators: Harvard Medical School, Imperial College, Ben Gurion

•Platelet diameter is 2-4 µm

•Normal platelet concentration in 
blood is 300,000/mm3

•Functions: activation, adhesion to 
injured walls, and other platelets 

activated platelets

•Arterioles/venules 50 microns



Stochastic Model - First Simulation of Begent & Born Experiment

•Thrombus growing on a blood vessel wall in vivo •Accumulation of platelets in a thrombus

•Exponential thrombus growth rate coefficients -- effects of pulsation (right)



MD DPD

Dissipative Particle Dynamics (DPD) – Coarse-Grained MD

•Momentum-conserving

•Galilean-invariant

•Off-lattice

•Soft-potentials

•Conservative

•Dissipative

•Random

•Speed-up w.r.t. MD (N mol/DPD)

•1000 x N8/3
; e.g. N=10: 500,000 times

Periodic

Periodic
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rio

di
c
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rio
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c

F

•Drag coefficient

•viscosity



References on Dissipative Particle Dynamics

•E. Keaveny, I. Pivkin, M.R. Maxey and G.E. Karniadakis, “A comparative study between dissipative 

particle dynamics and molecular dynamics for simple- and complex-geometry flows”, J. Chemical Physics,

vol. 123, p. 104107, 2005.

•I. Pivkin and G.E. Karniadakis, “A new method to impose no-slip boundary conditions in dissipative particle 

dynamics”, J. Computational Phys., vol. 207,  pp. 114-128, 2005.

•V. Symeonidis, G.E. Karniadakis and B. Caswell, “A seamless approach to multiscale complex fluid simulation”,

Computing in Science & Engineering, pp. 39-46, May/June 2005.

•V. Symeonidis, G.E. Karniadakis and B. Caswell, “Dissipative particle dynamics simulations of polymer chains:

Scaling laws and shearing response compared to DNA experiments”, Phys. Rev. Lett., vol 95, 076001, 2005.

•V. Symeonidis & G.E. Karniadakis, “A family of time-staggered  schemes for integrating hybrid DPD models for 

polymers: Algorithms and applications”, J. Computational Phys., to appear.

•I. Pivkin and G.E. Karniadakis, “Coarse-graining limits in open and wall-bounded DPD systems”, J. Chemical 

Physics, submitted. 

•I. Pivkin and G.E. Karniadakis, “ Controlling density fluctuations in wall-bounded DPD systems, Phys. Rev. Lett.,

submitted. 
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Multi-scale modeling of the mouse heart: 
From genotype to phenotype

Andrew McCulloch, UCSD; H. Kirk Hammond, UCSD VAMC
Tom Borg, Bob Price, University of South Carolina

Interagency Modeling and Analysis Group
Multi-Scale Modeling Grantees Meeting

February 6th, 2005, NSF

Roth, D. M. et al. Circulation 2002;105:1989-1994



Structural and 
Functional Integration

1. Mechanistic biochemical 
models of molecular 
regulatory networks

2. Biophysical common pool 
models of whole myocyte 
excitation-contraction 
coupling mechanisms

3. Microstructurally-based 
constitutive models of 
anisotropic tissue electrical 
and mechanical properties

4. Three-dimensional 
continuum models of left 
and right ventricular 
electromechanics that 
include 3D muscle fiber and 
sheet orientations

5. Systems models of 
circulatory hemodynamics

cAMP



Experimental Validation
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ARL
Penn State

Multi-Scale Human Respiratory System Simulations to Study the Health 
Effects of Aging, Disease and Inhaled Substances

Robert F. Kunz1, Daniel C. Haworth1, Andres Kriete2
1 Penn State University, USA, 2 Drexel University

MSM PI Meeting, Arlington, VA, 6 February 2006

Project goal: Develop, couple, apply, and validate medical imaging and physics 
modeling of resolvable and sub-resolvable scales in human respiration. 
• High-resolution computed tomography (HRCT) will be used to characterize the “macroscale”
convective range geometry of the lung.
• Microscopic computed tomography (μCT) and confocal microscopy (CLSM) will be used to 
characterize the “microscale” global and cellular architectures of the respiratory units.
• Multiphase computational fluid dynamics (CFD), and quasi-one-dimensional (Q1D) functional 
modeling will be used to simulate the multi-component fluid mechanics at these macro and 
micro scales, respectively.
• Software infrastructure and two-phase fluid mechanics models will be developed to address 
the coupling between the physics at these two scales. Model predictions will be validated 
against experimental and clinical data from the literature.



ARL
Penn State Elements of Program



ARL
Penn State Elements of Program

Exterior Communications Interface (ECI) process 
connectivity for respiratory system analysis

Micro-CT renditions of a 25-year-old control lung (left) 
and a76-year-old lung (middle). CLSM image stack of 

alveoli in lung color-coded for depth (right)

Unsteady oxygen uptake CFD simulations

Quasi-1D modeling of effective respiratory unit volume 
through one breathing cycle using a control feedback 

algorithm



PI: Ching-Long Lin
Title: Multiscale simulation of gas flow 
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NIH MSM Multiscale simulation of gas 
flow distribution in the human lung 
Specific Aims

Establish efficient techniques for generating subject-specific 
computational meshes for CFD analysis, including mesh 
construction of conducting airways from CT images and 
synthesized airways beyond the limitation of CT resolution using
a volume-filling algorithm;
Integrate the custom developed 3D CFD model to the one-
dimensional (1D) gas transport model by developing an efficient 
algorithm to facilitate 3D to 1D coupling (large to small airways) 
or 1D to 3D coupling (bronchioles to alveolar ducts) for multiscale 
simulation;
Develop and experimentally validate a new predictive model of 
ventilation distribution by linking 3D CFD models to dynamic 
imaging of ventilation, via 1D flow models;
Make available the coupling algorithms and databases to the 
research and clinical communities.



Multi-Scale Modeling for Ventilation

1D Poiseuelle

3D Navier-Stokes

1D model: entire conducting airway 
tree, but less accurate 
3D model: more accurate, but limited 
number of airways 
Coupled 1D + 3D model: benefits of 
each approach



Experiments

Geometric 
Modeling

Lung Atlas (Dr. Hoffman, co-PI): document airway geometry over four decades 
of age in healthy and diseased adult humans.
Lung Physiome (Dr. Tawhai, co-I): develop integrative computational models 
at all levels of biological organization.
Clinical Application (Dr. McLennan, co-I): relate results to clinical application.

CFD+FSI 
Simulation

CT/MR scan 
& seg.

Knowledge on
gas transport in the 

human lungs

Technology
advances in drug 
delivery, health 

science, & CT/MRI

Brainstorm

This project

Physiome

Atlas

Multidisciplinary Research
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Macro-scale Mixing in Gut Physiology and 
Function
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Micro-scale Transport as a Critical Link between 
Molecular-scale Absorption and Macro-scale Mixing 

in Gut Physiology and Function (NSF)

Principle Investigators
• Jim Brasseur - modeling/simulation
• Andrew Webb - MRI, imaging
• Nadine Smith - animal experiment

Students
• Amit Ailiani - MRI, image analysis
• Gino Banco - modeling, image analysis

Consultants
• Jack Wood, Ohio State, GI neurophysiology
• Shiyi Chen, Johns Hopkins, LBM
• others informally (J Murray at Mayo,…)

Unfunded temporary help
• Anupam Pal - postdoc, gastric modeling
• Thomas Neuberger - MRI researcher

MSM PI Meeting, Bethesda, 6 February 2006



The Importance of Macro-Micro Couplings 

muscularis mucosae
(cellular physiology)

muscularis propria
(macro physiology)

MACRO MIXING; 
patch of high 

concentration nutrient/drug

villi (active control)

MICRO MIXING

mucosal
villi

~ 100μm

~ 1 cm

~ 100μm



Objectives and Methods

o Models and algorithms to couple 
macro to micro to molecular 
transport using Lattice-Boltzmann 
coupled with Molecular Dynamics 
methods.

o MR micro-coil technology to image 
gut villi in vivo.

o Advanced space-time image analysis
systems MRI quantification.

o Integrate image data with numerical 
simulation to advance understanding 
of micro-macro-cellular physiology 
and function of the gut.

macro lattice

micro 
lattice

molecular 
dynamics

rabbit gut
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Stimulus

Experiment

Model

Time
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Model
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Stimulus

Experiment
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Voltage

Model
NMDA

Voltage

2mm

David Cai (Courant Institute), Cortical Processing across Multiple Time and Space Scales

Large-Scale Modeling of Primary Visual Cortex

Networks of 106 Neurons

Physiologically constrained

Line-motion Illusion



Coarse-Graining Approach
From ‘Microscopic’ Equations of Neurodynamics
to derive equations governing large-scale coarse-grained dynamics

Embedded Network Approach

(1+1)(1+1)--DD Kinetic EquationsKinetic Equations:
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David Cai (Courant Institute), Cortical Processing across Multiple Time and Space Scales



Bressloff, Cowan, Golubitsky, Thomas and Wiener
Phil.Trans. R. Soc. Lond. B (2001)

Application of Spatially Coupled CoarseApplication of Spatially Coupled Coarse--Grained EquationsGrained Equations
Siegel, Sci. Am. (1977)

Symmetries

Dynamics?

Activity Patterns on Visual Cortex: Activity Patterns on Visual Cortex: 
(32x32 Orientation Hypercolumns in our simulation)

Image on Visual Field:Image on Visual Field:
after inverse retinocortical map

LSDLSD

David Cai (Courant Institute), Cortical Processing across Multiple Time and Space Scales
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Multi-scale Imaging, Analysis, and Integration 
of Brain Networks

Micro-scale 
Neurons in hippocampus

http://www.uhnresearch.ca/facilit
ies/wcif/gallery.html 

Nano-scale
Dense fibers in Zebrafish tectum

12nm x 12nm x 50nm voxels

Macro-scale
C57BL/6J mouse brain and its 

coronal slides

http://www.mbl.org/atlas170/atlas
170_start.html

Texas A&M University ● Stanford University

Choe et al. (TAMU / Stanford) Multi-scale Imaging, Analysis, and Integration of Brain Networks



Multi-scale Brain-Network Data 
Acquisition

Macro-scale
Mouse Brain Atlas 

(MAP): UCLA
Data provided by 

Arthur Toga

Micro-scale
Knife-Edge Scanning Microscope 
(KESM): Texas A&M University

Bruce H. McCormick

Nano-scale
Serial Block-Face Scanning 

Electron Microscope (SBF-SEM):

Max Planck Inst. :

Winfried Denk

Stanford: Stephen J. Smith

Choe et al. (TAMU / Stanford) Multi-scale Imaging, Analysis, and Integration of Brain Networks
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Multi-scale Reconstruction and Integration

Micro-scale 
Proximity Labelling (KESM)

David Mayerich (Texas A&M)
Nano-scale (goal)

Spine Morphology

K. Harris  (Med. Col. of GA)

Nano-scale 
SBF-SEM reconstruction

Brad Busse (Texas A&M)

Macro-scale 
Volumetric Atlas (Paxinos data)

Wonryull Koh (Texas A&M)

Choe et al. (TAMU / Stanford) Multi-scale Imaging, Analysis, and Integration of Brain Networks

N
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Automatic reconstruction and  inferring scaling properties
Acknowledgment: NIH/NINDS #1R01-NS54252
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PI Guess    Dynamic Simulation of Joints Using Multi-Scale Modeling

Dynamic Simulation of Joints Using MultiDynamic Simulation of Joints Using Multi--Scale ModelingScale Modeling

Research TeamResearch Team
Trent Guess  University of Missouri Trent Guess  University of Missouri –– Kansas City (UMKC)  Kansas City (UMKC)  Musculoskeletal BiomechanicsMusculoskeletal Biomechanics
Anil Anil MisraMisra UMKC  UMKC  NanoNano--Micro Scale Biomaterial ModelingMicro Scale Biomaterial Modeling
GaneshGanesh ThiagarajanThiagarajan UMKC  UMKC  Finite Element ModelingFinite Element Modeling
Reza Reza DerakhshaniDerakhshani UMKC   UMKC   ArtificialArtificial Neural NetworksNeural Networks
LorinLorin MaletskyMaletsky University of Kansas  University of Kansas  Experimental BiomechanicsExperimental Biomechanics
Terrence Terrence McIffMcIff University of Kansas Medical Center  University of Kansas Medical Center  Clinical BiomechanicsClinical Biomechanics

ObjectivesObjectives
Capture dynamic properties of joint Capture dynamic properties of joint 
tissuestissues

Nonlinear, Nonlinear, nonhomogenousnonhomogenous, , 
viscoelasticviscoelastic

For use in musculoskeletal models For use in musculoskeletal models 
(rigid body)(rigid body)

Neuromuscular contributionsNeuromuscular contributions
Tissue interdependenciesTissue interdependencies

Joint injury and diseaseJoint injury and disease
(Aufderheide and Athanasiou 2004)

(Aufderheide and Athanasiou 2004)



PI Guess    Dynamic Simulation of Joints Using Multi-Scale Modeling

ANN Model placed ANN Model placed 
within Musculoskeletal within Musculoskeletal 
Knee ModelKnee Model

ANN Model Inputs ANN Model Inputs 
Motion of Femur Motion of Femur 

and Tibiaand Tibia
ANN Model ANN Model 

OutputsOutputs
Reaction  forces Reaction  forces 

33--D forces D forces 
and moments and moments 

Contact pressuresContact pressures

Artificial Neural Network Artificial Neural Network 
(ANN)(ANN)

““LearnsLearns”” dynamic response dynamic response 
of articulations from of articulations from 
computationally intensive FE computationally intensive FE 
simulationssimulations

BiBi--PhasicPhasic Constitutive Constitutive 
EquationsEquations

Articular Cartilage Articular Cartilage 
Lateral Meniscus Lateral Meniscus 
Medial MeniscusMedial Meniscus

Representation of tissue as nano-scale 
grains interacting through psuedo bonds

σij εkl

fi δj

KinematicsEquilibrium

grain-scale

material-scale

up un

wp w n

ns

t

Dynamic  Dynamic  
Finite Element Finite Element 
(FE) Model(FE) Model

Tibia, FemurTibia, Femur
CartilageCartilage
MenisciMenisci



PI Guess    Dynamic Simulation of Joints Using Multi-Scale Modeling

Project ContributionsProject Contributions
Validated ANN ModelsValidated ANN Models

Capture the dynamic response of Capture the dynamic response of 
tibiotibio--femoralfemoral--menisci articulationsmenisci articulations

Method could be used to capture Method could be used to capture 
other tissues such as ligaments other tissues such as ligaments 

Tissue Interdependencies Tissue Interdependencies 
Menisci properties Menisci properties 
TibioTibio--femoral contactfemoral contact
Ligament strainLigament strain

Model ValidationModel Validation
Dynamic Knee SimulatorDynamic Knee Simulator
7 Cadaver knees7 Cadaver knees

KinematicsKinematics
Ligament strainLigament strain

Clinical Gait Lab (Human Subjects)Clinical Gait Lab (Human Subjects)
EMGEMG
KinematicsKinematics
Ground reaction forcesGround reaction forces



PI: Denise Kirschner
Title: A multi-scale approach for 

understanding antigen presentation in 
immunity
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Funding Agency: NIH/NLM and NIAID



Antigen presentation:
Initiating  and signaling the 

immune response

AP cell: macrophage or DC

Antigen presentation

Denise Kirschner -1



Genetic level

Molecular level

Cellular Level

Tissue level

System level

How does the peptide sequence affect binding to MHCII
(Kd, IC50 etc)? 

How do events occurring during antigen 
uptake, processing and loading affect peptide-
MHCII levels on the surface of the APC? 

How do these genetic and molecular events 
relate to T cells recognition and function?

Lymph nodes are the site of immune initiation-how does
this environment augment the APC-T cell interaction?

The blood supplies LNs with non-activated cells, and 
LNs supply armed effector cells to the site of infection. 
How does trafficking of cells between compartments 
occur and how can it influence infection outcome?

Denise Kirschner -2



What we hope to accomplish
• Develop new computational/mathematical and statistical tools to 

study complex biological systems at multiple scales
• Utilize data from mouse and non-human primate models to inform 

model development
• Uncover basic science of hypotheses of AP that can be tested
• Many pathogens interrupt one or more stages of antigen presentation
• Mycobacterium tuberculosis is the number one cause of death due to 

infectious disease in the world today (2 billion people infected)
• M. tuberculosis is known to interfere with a number of stages of AP
• Our goal is to elaborate understanding and generate hypotheses 

regarding this host-pathogen interaction and AP events
• Vaccines train the immune system to recognize pathogens via 

antigen presentation
• Information gained from our studies may be immediately applied to 

vaccine design for  M. tuberculosis as well as other pathogens.

Denise Kirschner 
3



PI: Ernst Georg Luebeck
Title: Scales of carcinogenesis: cells, crypts 

and cancer
Institution: Fred Hutchinson Cancer 

Research Center
Funding Agency: NIH/NCI



Scales of carcinogenesis: cells, crypts and cancer

organ of interest: GI tract (colon, gastric and Barrett's esophagus)  

Cells, crypts and cancer (Luebeck/Maley)



acquisition of mutations 
(Armitage&Doll/Nordling)

DNA and cell replication
DNA repair models

differentiation?

niche models:
Moran-type models (Nowak et al)
conveyor-belt models:
computer models (Shibata et al,
Potten&Loeffler, Roeder&Loefler)

natural history models
molecular and clinical epidemiology:

survival & risk analysis

Multistage & Multiscale Carcinogenesis

Cells, crypts and cancer (Luebeck/Maley)



modular design to 'connect' scale-specific processes across scales 
module 1: from a cell to a proliferative unit

account for cell cycle stages, cell division, DNA repair, 
sporadic and induced cell death, and accumulation of mutations

module 2: from a proliferative unit to a tissue unit (organ)
disruption of tissue architecture (e.g. wound-inflicted) and normal 
unit turnover, model clone evolution and expansion across tissue

module 3: from a tissue unit to cancer in populations
first-passage-times for the induction of clonal expansions, 
clonal expansion parameters, 
first-passage-time distributions of malignant transformations

Cells, crypts and cancer (Luebeck/Maley)



PI: Bridget Wilson
Title: Mapping and Modeling ErbB Receptor 

Membrane Topography
Institution: University of New Mexico Health 

Sciences Center
Funding Agency: NIH/NCI



MSM:  Mapping and Modeling ErbB Receptor
Membrane Topography  

Bridget Wilson, PI (Univ. of New Mexico)
with J. Edwards, J. Oliver, S. Steinberg, K. Leslie, J. Zhang,
G. Hsieh, M. Raymond-Stintz

Endometrial Cancer Model Complex Signaling Pathway



Mapping of Signaling Proteins in Native Membranes (EM)

UNM Biology Team: Quantitative Measurements,  Biochemistry,
High Resolution Microscopy of Signaling Pathway 
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1/3000th of cell 
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UNM Computational Team: Simulations of Signal Transduction 
MultiScale in Time and Space



PI: James Glazier
Title: Multiscale Studies of Segmentation in 

Vertebrate Embryos
Institution: Indiana University
Funding Agency: NIH/NIGMS



James A. Glazier, Santiago Schnell - Indiana University, Bloomington
Charles Little - Kansas University Medical Center

Mark S. Alber – University of Notre Dame

Multiscale Models and Experiments on 
Somitogenesis

During the Gastrulation Stage of Early Embryonic Development , the Primitive 
Streak and the Three Germ Layers Form. Subsequently, Somitogenesis Lays 
Down the Initial Body Plan, in Particular, the Periodic Structures which Give 

Rise to Anterior-Posterior Patterning.

Somitogenesis in Chick EC Culture. 
Courtesy: Susan Chapman. University College, London

Cell Movement during Gastrulation in Chick EC Culture. 
Courtesy: Cheng Cui, KUMC, Kansas City




The Glazier-Graner Cellular Potts Model and CompuCell
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•Metropolis algorithm: probability of configuration change

Compucell is an Open Source Monte-Carlo Cellular-
Automaton Modeling Framework. It Allows Researchers 
to Implement Their Models Without the Need for Low-
Level Programming. It Comes with a Full Featured 
Intuitive GUI And Visualization Tools. 

Compucell is an Example of a Model Sharing 
Environment That is Easy to Extend and Intuitive To Use. 



Effect of Changes in Cell Adhesion on Somite
Segmentation and Morphology, Ying Zhang, 
IUB

Somitogenesis Modeling: Full Integration of Somitogenesis Models – PDE and ODE 
Modeling of the Molecular Clock, Boolean Network Simulation of Genetic Regulation, 
ODE Modeling of Delta-Notch Signaling. 

Current Somitogenesis Modeling

Somite Segmentation Resulting from a Simple 
Molecular Clock, Nan Chen, ND

CompuCell: Full Support for Scripting Languages, Graphical Tools for Configuring 
Simulations, Further Improvements in the Graphical Front-End, Real-Time Simulation 
Steering, Parameter Sweep Options, Parallel Grid-Oriented Version, Integration with 
Other Sharing Frameworks, E.g. Physiome and BioSpice.

Development Plans



PI: Teresa Head-Gordon
Title: Multiscale Models to Study How 

Spatial Organization of Cellular 
Components Influences Signaling

Institution: UC Berkeley
Funding Agency: NIH/NIGMS



T CELL BIOLOGY:  FROM MOLECULES TO TISSUES

Integration of multiscale modeling with genetic, biochemical and
imaging experiments to enable discoveries

Head-Gordon 
(UCB)

Arkin (UCB), Chakraborty (MIT), Geissler (UCB), 
Oster (UCB)

Dustin (NYU) – experimental collaborator

Multiscale Models to Study How Spatial Organization of 
Cellular Components Influences Signaling

PI: Head-Gordon



Four specific aims that bridge multiple scales
(1) Develop hybrid Molecular dynamics/Brownian dynamics methods that can study 

formation of multi-protein signaling complexes initiated by receptor engagement.
(2) Develop models that can describe cytoskeletal dynamics triggered by intracellular 

signaling and those involved in endocytosis of cell surface receptors.
(3) Develop efficient hybrid algorithms combining stochastic and mean-fled 

treatments for studying signaling and cell migration in a structured environment.
(4) Integration of scales and testing against biological experiments.

Progress-to date
(1) An analytical electrostatic model for salt-screened interactions between proteins. I. 

Lotan & T. Head-Gordon (2006). J. Comp. Theo. Chem. accepted.

(2) A hybrid stochastic-deterministic algorithm for cell signaling under the influence of 
fields.  D. Wylie, Y. Hori, A. Dinner & A.K. Chakraborty, J. Phys. Chem. subm.

(3) Developing algorithm that combines signaling and migration (Chakraborty).

(4) Developing a method for modeling cytoskeletal rearrangements (Geissler).

(5) Developing a method for receptor endocytosis (Oster).
PI: Head-Gordon



• Software Development; Languages and Tools: C++, python, CVS, open MP, 
compiled and run on everything from Linux, C++ workstations and clusters to HPC 
platforms.
--> We would be interested in software collaborations that aid in the 

dissemination of our models and algorithms
• Algorithmic challenges: 

(1) To succinctly define  and model processes of direct biological relevance.
(2) To enable seamless algorithmic integration of multiple spatio-temporal scales. 

•Model Validation challenges: 
(1) Identifying trends that clearly distinguish among different physical pictures.
(2) Determining an acceptable level of quantitative agreement (parameter 

sensitivity).
(3) Close collaboration with experimental biologists.

•Multidisciplinary Collaboration challenges: 
(1) Understanding the language and tools used by each discipline      
(2) Developing strong synergies between tools rooted in different disciplines
(3) Familiarity with experiments. 

Model and Software Sharing Environments

PI: Head-Gordon



PI: Roger Kamm
Title: Multi-scale Analysis of Cellular Force 

Transmission and Biochemical Activation
Institution: MIT
Funding Agency: NIH/NIGMS



Multi-scale Analysis of Cellular Force Transmission and 
Biochemical Activation P.I., Roger D. Kamm

Continuum finite element modeling --
soft glassy material constitutive law

 

Soft glassy material constitutuve law:



Multi-scale Analysis of Cellular Force Transmission and 
Biochemical Activation P.I., Roger D. Kamm

Modeling the 
cytoskeleton: Brownian 

dynamics modeling

Using the Langevin equation:

a 3D matrix of “actin”
filaments is formed.

Atomistic 
simulations:  Talin, 
one of the proteins 

within a focal 
adhesion

Force-extension 
curves for various 

actin binding proteins 
can be computed 
using molecular 

dynamics



Multi-scale Analysis of Cellular Force Transmission and 
Biochemical Activation P.I., Roger D. Kamm

Optical tweezer microrheology

Trapping laser

Microbead

Viscoelasticity of actin networks with α-actinin

Actin - α-actinin
matrix

Texas red
Phalloidin staining; actin + 
sruin

Confocal and deconvolved
images, R = 0.2
Shin et al., PNAS, 2004

Prepare actin matrix with 
different concentrations

Optical tweezer measurement
1. Confined brownian motion
2. Transient step response 

Mechanical properties of actin 
network with α-actinin



PI: Anthony Ladd
Title: Multi-scale modeling of chemical-to-

mechanical energy conversion in actin-
based motility

Institution: University of Florida
Funding Agency: NSF/CTS



Ladd: Actin motility

Biochemical model of an actin network:
Where does the force generation come from?
Filaments remain attached (Dickinson and Purich)

α - actinin

F-actin

Arp2/3 complex

ActAVASP

Forces
Intramolecular:-Kirchoff rod
Intermolecular:-DVLO, Coulomb
Cross-links:-Rigid or elastic rods 
including orientation along rod
Hydrodynamic:-FLBE



Ladd: Actin motility

Opportunities for code sharing

Lattice-Boltzmann model for hydrodynamic interactions and 
thermal fluctuations: available on request (solid particles)

New code for polymer solutions based on FLBE (under 
development); scales linearly with chain length; 108 time 
steps
Close to real-time dynamics of flexible polymers (Kuhn-
scale model of DNA)

Dynamics of interacting elastic rods (under development)
To be integrated with FLBE code.



Ladd: Actin motility

Computational issues

Wide range of time scales require fine-grained parallelism
At present we get linear scaling with 106 nodes per cpu (97%)
Need to improve parallelism down to 104 nodes per cpu

Grid points X 1000 per sec per cpu

2880

2900

2920

2940

2960

0 20 40 60



PI: Peter Ortoleva
Title: Intercellular Genomics of Subsurface 

Microbial Colonies
Institution: Indiana University
Funding Agency: DOE/ASCR



At each node of a macrogrid we solve
intracellular and intrapore scale models, 
which are embedded in a large scale 
reaction-transport solver.



PI: Niles Pierce
Title: Coarse-graining DNA Energy 

Landscapes for the Analysis of 
Hybridization Kinetics

Institution: California Institute of Technology
Funding Agency: NSF/DMS



Coarse-Graining DNA Free Energy Landscapes CALTECH Pierce

Nucleic Acid
Free Energy Landscape

Equilibrium
Metastability

Kinetics

Characterize function of 
Synthetic DNA devices
Regulatory RNAs

Secondary Structure Model

Set of base pairs Landscape graph
Node: 2° structure
Edge: elementary step

Project 1: Fast Stochastic Kinetics

Consider a strand of length N

Landscape grows exponentially with N
Infeasible to enumerate states

Explore using fast stochastic kinetics
Generate trajectories from the 
exact probability distributions

Old complexity: O(N5) (Flamm, et al., 2000)
New complexity: O(N3logN)
New generality: multiple strands



Coarse-Graining DNA Free Energy Landscapes CALTECH Pierce

Project 2: Trajectory-Based 
Coarse-Graining

Experiments often suggest that kinetics are
dominated by a few macrostates

Identify transitions between macrostates
on the fly by comparing occupancy
distributions along trajectories

Combine repeated distributions into 
macrostates

Estimate transition rates using local 
equilibrium approximation (Widom, 1965) Attempt piecewise reduction of graphs

Project 3: Model Reduction of 
Subgraphs via Balanced Truncation

Treat subgraph (5-14) as a reservoir 
interacting with system of interest (1-4)

Reduce reservoir to 5 states (≈.00001 error) 
or 3 states (≈.01 error)



Project 4: Thermodynamic Analysis
of Interacting Nucleic Acid Strands

Consider a test tube containing multiple
strand species that interact to form multiple
species of strand complexes

New multi-stranded partition function
algorithm yields the equilibrium
concentration of each complex species

The free energy landscape is convex
when coarse-grained to complexes

Coarse-Graining DNA Free Energy Landscapes CALTECH Pierce

Research Groups
Hideo Mabuchi, Caltech
Niles Pierce, Caltech
Erik Winfree, Caltech
Bernard Yurke, Lucent Bell Labs

Software
www.nupack.org

Hybridization chain reaction: 
triggered amplification for biosensing

Project 5: Mapping the Free Energy
Landscape for HCR

DNA hairpins polymerize only in the 
presence of target molecules

Equilibrium and kinetics calculations critical
to interpreting experimental data



PI: Jay Schieber
Title: CISE: Multiscale Modeling To Develop 

A Cyberinfrastructure For The Dynamics 
Of Flexible And Stiff Entangled 
Macromolecules

Institution: Illinois Institute of Technology
Funding Agency: NSF/OCI



Multiscale Modeling To Develop A 
Cyberinfrastructure For The

Dynamics Of Flexible And Stiff Entangled 
Macromolecules

Jay D. Schieber

Study dynamics of single chain in 
concentrated environment.

Multiscale model to predict 
macroscopic behavior based on 
molecular architecture.  

Jorge Iñiguez-Lluhi

http://www.iit.edu/


Theoretical

• Coarse-grained picture

• Stat. Mech. → Entropy

• Friction at entanglement

• Two parameter model

• Brownian Dynamics

• Linear and branched chains



Experimental

• Novel Synthetic approach based on 
site-specific covalent attachment of 
Small Ubiquitin-like MOdifier proteins 
(SUMO).

– Allows generation of defined branched 
architectures.

• Holographic grating technique (FRS)

– To study diffusion of different protein 
architectures in well-characterized gels.

• Gel electrophoresis

– To study the effect of architecture on  
electrophoretic mobility.  
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PI: Stanislav Shvartsman
Title: Collaborative Research: Multiscale 

analysis of epithelial patterning: modeling 
and experiments

Institution: Princeton University
Funding Agency: NIH/NIGMS



Experimental system
(DV patterning of the follicular epithelium)

1. Egg chamber: oocyte, 15 nurse cells, ~1000 epithelial cells
2. Eggshell: >10 cell fates (operculum, dorsal appendages, etc)
3. Morphology depends on cell-cell communication in oogenesis

(Van Buskirk and Schupbach, 99)

Multiscale analysis of epithelial patterning: modeling and experiments                  Shvartsman, Muratov, Duffy



# of stripes = # of appendages

rho Br

Pattern formation and morphogenesis

Multiscale analysis of epithelial patterning: modeling and experiments                  Shvartsman, Muratov, Duffy



Microarray experiments
<9 9-10 >10

EGFR↑ BMP↑

EGFR↓ BMP↓

4 treatments

control
Analysis by “Golden Spike Method”

Choe S., et al Genome Biology 2005, 6:R16

(EGFR↑ OR EGFR↓) AND (BMP↑ OR BMP↓)

Multiscale analysis of epithelial patterning: modeling and experiments                  Shvartsman, Muratov, Duffy



PI: Michela Taufer
Title: DAPLDS: a Dynamically Adaptive 

Protein-Ligand Docking System based on 
Multi-Scale Modeling

Institution: UTEP
Funding Agency: NSF/OCI



M. Taufer - SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive 
Protein-Ligand Docking System based on Multi-Scale Modeling

Investigators, Objectives, and Research Fields

Investigators:
• Michela Taufer (UTEP). Patricia J. Teller (UTEP), Martine Ceberio (UTEP), Charles L. 

Brook, III (TSRI), David P. Anderson (UC Berkeley)
Objectives:
• to explore the multi-scale nature of algorithmic adaptations in protein-ligand docking

protein-ligand representation: spanning scale from rigid to flexible representation of protein-ligand 
interactions
solvent representation: spanning scale from less accurate to more accurate modeling of water 
treatment
sampling strategy: spanning scale from fixed to adaptive sampling of the protein-ligand docking space

• to develop cyber infrastructures based on computational methods and models that efficiently 
accommodate these adaptations

Research fields:
• docking methods (Drs. Charles L. Brooks III at TSRI and Michela Taufer at UTEP)
• decision theory (Dr. Martine Ceberio at UTEP)
• modeling for dynamic adaptation (Drs. Patricia J. Teller and Michela Taufer at UTEP)
• volunteer computing (Drs. David P. Anderson at UC Berkeley and Michela Taufer at UTEP)



M. Taufer - SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive 
Protein-Ligand Docking System based on Multi-Scale Modeling

Project Overview

rmsd

timemodel

for p-l
complexh

select docking 
parameters for modeli+1
trading off accuracy and 
execution time

identify p-l classes 
well-docked by 
modeli and those 
misdocked

LPDB 
ligands

PDB proteins
LPDB 

proteins

initial model

modeli+1

p-l representation

solvent 
representation

sampling 
strategy

modeli

p-l complexh
from classl

“new” well-
docked 

complexes, 
drug leads

experimental
laboratory 

volunteers’
computers

ligands

Sample using Volunteers’
Resources
computer simulation of docking 
process using modeli -- attempt 
to dock a transformation of 
ligandj, orienting it differently on 
each attempt, at potential 
docking sites of proteink

Validate
compute RMSD and docking 
accuracy of docked structure –
compare to RMSD of  X-ray 
crystal structure

Facilitate Drug 
Discovery
use modeli, which effectively 
well-docks p-l classl, to identify 
“new” well-docked complexes 
from classl

good model 

for p-l class
l

bad lab results, 

refine modeli

rank structures based on 
energy, selecting the one(s) 
with lowest energy

energy, docked 
structure, and 
execution time

docked structures 
for p-l complexh

X-ray crystal 
structure
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