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Entangled Macromolecular Dynamics.

e A single mathematical and computational framework for all
dynamical properties of any macromolecule in a concentrated
environment.

e Examples include: diffusion of DNA in a cytoskeleton, elec-
trophoresis of denatured proteins, linear or branched archi-
tectures, rheological properties, and viscoelastic mechanical
response of filament networks.

e Requires as input the free energy of a trapped chain seg-
ment, which is found using statistical mechanics, and a sin-
gle, short-time-scale, phenomenological time constant acces-
Sible by molecular dynamics.



Evidence #3 Everaers, et al.; Mavrantzas, et al.

Atomistic simulations: global mini-
mization of chain length while pre-
serving chain-chain constraints.
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Dynamic Variables:

e Length of strands:
{Q:t)} i=2, ..., Z(t)-1

e Number of Kuhn steps in strands:
{N;(t)}, i =1, ..., Z(1)

Parameters:

e Ave. No. of Kuhn Steps in Strand: 8 (~ M from chemistry)
e Total number of Kuhn Steps: Nk (from mol. weight)
e Smallest Time Constant: Te = NQQTK (phenomenological)



From the free energy F'(S2) we can obtain all static properties:

F(Q 27
peq(Q) ~ exXp | — ( ) ) (NK — ZNZ) exp (,LL_)
N B 1 0 N kI )
Maxwell- monomer  entanglement
Boltzmann conservation bath

Microcanonical ensemble in N
Grand Canonical in Z: u4 =logf3

Can be used to check code.



Strand Dynamics
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« W(QIQ) ~ L exp [F (92'2;5(9)]



Liquid Dynamics Assumptions:

2
Random walk — Gaussian chain: kBLT 3¢5 + 3log N (not

2
NaK

necessary)

Total chain friction is constant (not necessary).

Entanglements are deformed affinely with macroscopic flow.

Entanglements are created and destroyed at ends only (not
necessary).
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Current abilities:

e Linear chains; branched free energy derived.

e Diffusion

e Rheology

e Polydispersity

e Have derived free energy for electrophoresis; atomistic-level
coarse graining



Working on:

e Electrophoresis simulations

e Branched chain simulations

e Semi-flexible fibers



SUMOQylation as a tool to generate
branched proteins of defined architecture

SUMOylation is a newly described cellular

mechanism to generate branched proteins.

Branched proteins have unusual properties /T /T/
in analytical techniques such as gel

electrophoresis. ~'—(/
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