
Towards Large-Scale Molecular
Dynamics Simulations on

Graphics Processors

Joe Davis
Michela Taufer
Sandeep Patel

3

Outline

• Introduction
• Brief overview on GPUs and GPU programming paradigm
• Running MD simulations on GPUs
• Case study I: Solvent Simulation

• Water model
• Performance
• Result accuracy

• Case Study 2: Ionic solution
• Ion Model
• Performance

• Pitfalls
• Conclusions

4

Introduction (I)

3

• Graphics Processing Units (GPUs) have been extensively used in
graphics intensive applications
• Development driven by economy, e.g., video game industry,

motion picture
• The inherent parallelization of GPUs makes them suitable for scientific

applications
• Recent exploration of potential of GPUs for mathematics and

scientific, and clinical computing
• Medical diagnostics:
• GPUs coupled to MRI Hardware (Stone et al. Proc. of 2007 Computing Frontiers

conference, 7-9 May, 2008)

• Molecular modeling:
• Electrostatic Potential Calculation (Stone et al. J. Comp. Chem. 28, #16, pp. 2618-2640)

• Ion Placement (Stone et al. J. Comp. Chem. 28, #16, pp. 2618-2640)

• Van der Waals Fluids / Polymers (Anderson et al. J. Comput. Physics 2008)

5

Introduction (II)

4

• Special purpose hardware: specific types of calculations
• Protein Explorer systems and its LSI 'MDGRAPE-3 chip’ (Taiji et al.

in Proc. of 2003 ACM/IEEE Supercomputing Conference, 15-21 Nov. 2003)

• Anton and its 12 identical MD-specific ASICs (Shaw et al. in Proc. of the
34th Annual International Symposium on Computer Architecture, 9-13 June, 2007)

• General Purpose GPUs (or GPGPUs): cost effective and
readily available in recent workstations
• GeForce FX5600
• 1.5GBytes memory
• Cost $2,795

 GeForce 9800 GX2
 Dual GPU-based graphics card
 512MBytes memory per GPU
 Cost $665

6

GPU Overview (I)

5

• NVIDIA GeForce 8 Series:
• 16 Streaming Multiprocessor (1-N)
• 8 Scalar Processors/SM (1-M)
• 16, 8-way SIMD cores = 128 PEs

• Massively parallel multithreaded
• Up to 12,288 active threads

handled by thread execution
manager

• Actual application performance
• Molecular dynamics -VMD ion

placement: 290 GFLOPS
• FFT: 52 benchFFT GFLOPS

From CUDA Programming Guide, NVIDIA

7

GPU Overview (II)

6
From CUDA Programming Guide, NVIDIA

• Memory types:
• Read/write per thread

• Registers
• Local memory

• Read/write per block
• Shared memory

• Read/write per grid
• Global memory

• Read-only per grid
• Constant memory
• Texture memory

• Communication among
devices and with CPU
• Through PCI bus

8

Programming Paradigm

7

• Program in C:
• Serial program executed on CPU
• Parallel kernels executed on GPU

• Parallel kernels composed of many
threads
• Threads are grouped into thread

blocks
• Threads in the same block can

cooperate
• Thread block = a (data) parallel

task (SIMD)
• Same entry point but can execute

any code - conditions are allowed
in block threads

• Different blocks are independent
• Several blocks = task parallelism

Thread t

t0t1…tnt0 t1…tnt0 t1…tn

Block B

Kernel 0
Kernel launched by host (CPU)

Device processor array

Multiprocessor

9

Programming GPUs

9

• Past: APIs originally through graphics interfaces e.g.,
OpenGL
• Not easy to use for general usage: cast computation in terms of

graphics operations:
• Draw the calculation
• Interpret “image” post-calculation

• Present: NVDIA CUDA (Compute Unified Device
Architecture) language/library
• Easy to use: CUDA provides minimal set of extensions

necessary to expose power of GPGPUs
• Includes C-compiler and development tools

• CUDA optimization strategy:
• Maximize independent parallelism
• Maximize arithmetic intensive computation
• Take advantage of on-chip per-block shared memory
• Do computation on the GPUs and avoid data transfer

1
0

MD on GPUs

• MD on GPU: Non-bond interactions (pair interactions)
• Non-bond list is generated by checking all pair distances against

the cut-off in parallel (efficient tiling approach)
• A thread iterates through the non-bond list for a single atom and

accumulates the non-bonded interactions

• Why MD on GPU?
• Non-bond expand scales of time

and physical dimension (system
complexity)

• All-atom resolution (micro to
milliseconds)

• Course-graining (seconds)
• Continuum physics with molecular

detail?

10

1
1

Water Simulations

• Water simulations on GPU vs. on CPU
• CUDA code emulating the CHARMM molecular

modeling package (Brooks, B. R. et al, J. Comput. Chem., 1983, 4: 187)

• Reference simulation of CHARMM on Beowulf
cluster
• Intel Xeon 5150 2.66 GHz (Woodcrest)

• NVIDIA GPUs
• Single precision Quadro FX 5600 (1.5GB memory)
• Single precision GeForce 9800 GX2 (dual GPUs per card,

500MB memory)
• Double precision GTX 280

11

1
2

Water Model

• Flexible Water SPC/Fw (Wu et al, J. Chem. Phys., 2006)

• Intra-molecular potential:

• Computed on GPU using lists (bonds/angles lists)
• Non-bonded potential:
• Lennard-Jones potential
• Shifted-force electrostatics with cut-off only (no Ewald)
• Computed on GPU using a list-based evaluation

12

1
3

System Parameters

13

• NVE
• Pre-equilibrated box
• PBC: Cubic
• Density = 1.012 g/mL
• ∆t = 1 fs
• Integrator:
• Verlet on GPU
• Orig. Verlet with

CHARMM on CPU

13

1
4

Performance
Performance metrics: number of MD steps in one second
GPU: single precision GeForce 9800 GX2 (dual GPUs per card,
500MB memory)

(data from 100,000 MD steps)

In average GPU is ~7x faster on average! 14

1
5

CHARMM on
CPU and GPU

15

1
6

Ionic Solutions
• Nonpolarizable ions with SPC/Fw water
• Liquid-vapor interface
• Ion model:
• Electrostatic and van der Waals only
• CHARMM parameters modified for more accurate

interaction energies1

1 Lamoureux, G. and Roux, B., J.
Phys. Chem. B, 2006, 110: 3308.

16

1
7

Performance

17

• Performance metrics: number of MD steps in one second
• NVIDIA GPUs:
• Single precision GeForce 9800 GX2 (dual GPUs per card,

500MB memory)
• Single precision Quadro FX 5600 (1.5GB memory)
• Double precision GTX 280

1
8

Pitfalls
• Single or double precision?

• G8x GPU FP is 32-bit, newer T10P GPU is 64-bit
• Some 32-bit operations are not IEEE compliant
• 64-bit arithmetic is more accurate, but more costly

• Fortran compilation?
• Fortran compiler is forthcoming
• Our team will be part of the alpha testers

• Code optimization is everything?
• Targets: memory access, efficient list building/updating, loops,

conditional, data structure, etc.
• The optimization of our code is a work in progress

• Limited number of GPUs per card?
• 870: board (1 GPU)
• D870: deskside unit (2 GPUs)
• S870: 1u server unit (4 GPUs)
• We have workstations with two dual-GPU cards ready for testing

18

1
9

Related Work
• Yang et al1

• Proof of concept
• Limited by graphics-specific programming interface

• Stone et al2

• Moved nonbond force calculation to GPU
• Focus mostly on modeling applications

• Anderson et al3
• MD running entirely on GPU (HOOMD)
• Neighbor list implementation

• Van Meel et al4

• Very similar to Anderson's study

1 Yang, J. et al, J. Comput. Phys., 2007, 221: 799.
2 Stone, J. E. et al, J. Comput. Chem., 2007, 28: 2618.
3 Anderson, J. A. et al, J. Comput. Phys., 2008, 227: 5342.
4 Van Meel, J. A. et al, Mol. Sim., 2008, 34: 259. 19

2
0

Conclusions

• Current achievements:
• Implementation of a local version of MD code on current

generation of GPUs
• Straightforward, naive implementation
• Promising results

• Work in progress:
• Optimization and tuning of performance
• Expand MD options (additional potentials, PME)

• Final goals:
• Effective compilation of CHARMM on GPU
• Study of large solvent systems for long simulation times, up

to 100ns, with CHARMM
20

2
1

Acknowledgements

Collaborators:
• Adnan Ozsoy (University of Delaware)
• David Hoff, Sumit Gupta, Scott LeGrand (NVIDIA)
• Joshua Anderson (Iowa State University)

Sponsors:
• NVIDIA Professor Partnership program
• NSF OCI #0802650
• University of Delaware

21

