# Computational Multi-Scale Modeling In Protein-Ligand Docking



### Roger S. Armen, Michela Taufer and Charles L. Brooks III

# Motivation: Why Protein-Ligand Docking?

What are the goals of docking ?

- 1. Accurate prediction of binding geometry (the docking problem)
- 2. Accurate prediction of binding free energy (the scoring problem)

Can we augment the experimental approach ?

- Virtual screening

   (discover novel chemotypes)
- Investigation of known lead compounds ( structure-guided-design of novel derivative compounds )

# **Overview of (Flexible Ligand / Rigid Receptor) Docking**



- 1. Ongoing development of CHARMM-based molecular docking methods (CDOCKER)
- 2. Linear Interaction energy (LIE) free energy methods for scoring
- 3. Incorporation of protein flexibility into molecular docking
- 4. Use docking to predict the selectivity of kinase inhibitors
- 5. Use docking to design specific protein-ligand interactions
- 6. Use docking to peruse a fragment-based approach to inhibitor design

### **Computational Multi-Scale Modeling In Protein-Ligand Docking**

The term multi-scale modeling usually refers to approaches to solving problems with important features on multiple spatial/temporal scales.

This definition can be extended to include non-orthogonal descriptive scales that allow a hierarchical approach to problem solving.

Our scales describe:

Computational complexity of "docking models"

As docking tasks are serial (not parallel), docking is a good computational problem for:

#### **Volunteer distributed computing**

Docking job runtime scales with the computational complexity of the "docking model".







**Docking@Home Project** 

http://docking.gcl.cis.udel.edu

Volunteer distributed computing for high-throughput protein-ligand docking simulations:

BOINC (Berkeley Open Infrastructure for Network Computing)

Initial scientific goals are to validate our existing docking methods on broader test sets of protein-ligand complexes, and to develop and validate new methods.

### Multi-Scale Computational Models





# **Overview of (Flexible Ligand / Rigid Receptor) Docking**



- 1. Ongoing development of CHARMM-based molecular docking methods (CDOCKER)
- 2. Linear Interaction energy (LIE) free energy methods for scoring
- 3. Incorporation of protein flexibility into molecular docking
- 4. Use docking to predict the selectivity of kinase inhibitors
- 5. Use docking to design specific protein-ligand interactions
- 6. Use docking to peruse a fragment-based approach to inhibitor design

### Why Do We Need Protein Flexibility In Docking?

Dock ligand 1w83 into receptor 1ouy



**Reference structure (Gray)** Docking Success (Blue) RMSD (1.8 Å) Rigid Receptor

(Red) RMSD (8.1 Å)

Dock ligand 1 ouy into receptor 1w83



**Reference structure (Gray)** Docking Success (Blue) RMSD (1.5 Å) (Red) RMSD (8.7 Å) Rigid Receptor

# **Approaches to Incorporate Protein Flexibility**

If multiple crystal structures of the target protein exist:

Use multiple rigid protein conformations

Different approaches for protein conformational search:

- 1. (rigid backbone) flexible side chain
- 2. (flexible backbone) flexible side chains
- 3. Entire protein flexible

MD (Molecular Dynamics in Cartesian Space) TAMD (Torsion Angle Molecular Dynamics in Internal Coordinates)

> Small side chain Movements

Large backbone Movements

### **Torsion Angle Molecular Dynamics (TAMD)**



# New Flexible Receptor Docking Algorithm Using TAMD

| Step 1 | Generate a diverse ensemble of flexible ligand conformations using MD. ( N= 200 )                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 2 | <u>TAMD sampling In the absence of the ligand (apo TAMD):</u><br>Generate a diverse ensemble of flexible receptor conformations<br>using TAMD simulated annealing. ( N= 200 )                                       |
| Step 3 | Using all-atom models and a soft-core potential, for each new receptor-ligand pair:                                                                                                                                 |
|        | Perform 1000 ligand rotations to identify the optimal rotation for each new ligand conf. in a given flexible receptor conf.                                                                                         |
| Step 4 | <b>TAMD sampling with the optimal ligand rotation (holo TAMD):</b><br>Refine the structure of the receptor-ligand complex using<br>TAMD simulated annealing. The protein and ligand are<br>flexible simultaneously. |
| Step 5 | Calculate $\Delta G$ binding for the ensemble of refined receptor-ligand complexes, and select the "top 5" conformations.                                                                                           |
| Step 6 | For the top 5 conformations, perform additional MD conformational sampling using the GBMV implicit solvent model. Use these conformations for an improved calculation of $\Delta G$ binding.                        |

Taufer, M., Armen, R. S., Chen, J., Teller, P.J., & Brooks, C.L. III IEEE Eng. Med. & Biol. (2008) in press

## "Cross-Docking" to Validate Flexible Protein Docking

#### What is Cross-Docking?

|          | prot 1a9u  | prot 1bl6  | prot 1bl7  |
|----------|------------|------------|------------|
| lig 1a9u | self-dock  | cross-dock | cross-dock |
| lig 1bl6 | cross-dock | self-dock  | cross-dock |
| lig 1bl7 | cross-dock | cross-dock | self-dock  |

Cross-Docking can determine the sensitivity of docking results to changes in protein conformation:

#### 1. Consider results from a row:

Each individual ligand is docked into an ensemble of experimentally determined receptor conformations

#### 2. Consider results from a column:

The entire ligand series is docked into each individual receptor conformation

## "Cross-Docking" to Validate Flexible Protein Docking

|          | prot 1a9u  | prot 1bl6  | prot 1bl7  |
|----------|------------|------------|------------|
| lig 1a9u | self-dock  | cross-dock | cross-dock |
| lig 1bl6 | cross-dock | self-dock  | cross-dock |
| lig 1bl7 | cross-dock | cross-dock | self-dock  |

We aim to validate the flexible docking algorithm by comparing docking into a rigid receptor to flexible receptor TAMD docking.

We successfully demonstrate:

- 1. that reasonable receptor conformations are sampled regardless of the initial receptor conformation
- 2. the correct "native-like" receptor-ligand conformation can be selected from an ensemble of fully flexible complexes.

# **Cross-Docking Test Set for Validation of TAMD Method**



 Less challenging cases (rigid proteins): Some ligands only require a very slight relaxation of the binding pocket to find the correct conformation.

#### 2. <u>Very difficult cases ( flexible proteins )</u>:

Some ligands require significant rearrangement of the binding pocket. These receptors will need to exhibit enough flexibility to successfully sample "native-like" conformations ( the cross-dock reference structure )

#### However, if our proteins exhibit too much flexibility:

- (a) we will unlikely be able to find the correct conformation
- (b) selecting a "native-like" conf. from an ensemble will be more difficult
- (c) "less challenging cases" will become difficult

# p38alpha MAP Kinase: Very Difficult Cross-Docking Test

Shown are 4 diverse protein-ligand complex crystal structures:





Two flexible loops define the binding site: 1. The DFG Loop (res:165-177)

2. The Gly rich loop (res:30-41)

# p38alpha MAP Kinase: A Diverse Set of Ligands



### **Models of Protein Flexibility & Degrees of Freedom**



The flexibility of the protein can be defined by any combination of fully flexible backbone segments and flexible side chains.

| Flexible              | Degrees of | N Flexible | N Flexible  | Description of                          |
|-----------------------|------------|------------|-------------|-----------------------------------------|
| <b>Protein Models</b> | Freedom    | Segments   | Side Chains | Flexible Protein Models                 |
| TAMD model 1          | 328        | 2          | 50          | 2 flexible loops + flexible side chains |
| TAMD model 2          | 442        | 6          | 50          | 6 flexible segments                     |
| TAMD model 3          | 1651       | 1          | 351         | entire protein flexible                 |
| Cartesian MD          | 14,133     | 1          | 351         | entire protein flexible                 |

### **Cross-Docking Accuracy Validates the TAMD Approach**



### Cross-Docking Accuracy (% success over 12x12 = 144 docking simulations)

| Control (Rigid Re       | ceptor)    | best1 pose | best1 pose | any of top 5 | any of top 5 |
|-------------------------|------------|------------|------------|--------------|--------------|
|                         |            | <= 2.0 A   | <= 3.0 A   | <= 2.0 A     | <= 3.0 A     |
| <b>Rigid Receptor D</b> | ocking     | 15%        | 24%        | 38%          | 51%          |
|                         |            |            |            |              |              |
| Flexible                | Degrees of | best1 pose | best1 pose | any of top 5 | any of top 5 |
| Protein Models          | Freedom    | <= 2.0 A   | <= 3.0 A   | <= 2.0 A     | <= 3.0 A     |
| TAMD model 1            | 328        | 34%        | 52%        | 83%          | 94%          |
| TAMD model 2            | 442        | 31%        | 48%        | 59%          | 85%          |
| TAMD model 3            | 1651       | 11%        | 28%        | 44%          | 78%          |

### **Cross-Docking Accuracy Validates the TAMD Approach**

#### Control Rigid Receptor (Lowest Ligand RMSD for any of the Top 5 Scoring Pose)

| Yellow | RMSD <= 2.0 A |
|--------|---------------|
| Orange | RMSD <= 3.0 A |

|      | 1a9u | 1bl6 | 1bl7 | 1di9 | 1kv1 | 1kv2 | 1ouk | 1ouy | 1oz1 | 1w83 | 1w84 | 1yqj |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1a9u | 1.7  | 3.6  | 2.5  | 2.6  | 6.6  | 7.6  | 3.4  | 2.6  | 2.2  | 6.4  | 2.1  | 2.4  | 1a9u |
| 1bl6 | 2.1  | 1.6  | 1.0  | 4.5  | 6.2  | 6.0  | 1.7  | 4.2  | 1.7  | 1.3  | 4.2  | 1.7  | 1bl6 |
| 1bl7 | 1.6  | 2.7  | 1.0  | 1.6  | 8.4  | 6.0  | 2.0  | 1.5  | 1.7  | 1.9  | 1.3  | 4.6  | 1bl7 |
| 1di9 | 4.4  | 0.9  | 0.9  | 0.7  | 2.1  | 1.9  | 2.8  | 2.8  | 0.7  | 6.6  | 5.1  | 2.8  | 1di9 |
| 1kv1 | 7.0  | 5.8  | 6.9  | 7.7  | 1.0  | 1.6  | 7.6  | 8.9  | 7.1  | 0.5  | 6.7  | 6.2  | 1kv1 |
| 1kv2 | 6.7  | 7.1  | 5.9  | 9.4  | 1.2  | 0.4  | 9.6  | 8.9  | 8.8  | 1.5  | 8.3  | 6.4  | 1kv2 |
| 1ouk | 8.1  | 7.4  | 6.2  | 2.6  |      | 7.4  | 0.7  | 1.7  | 7.9  | 9.9  | 2.9  | 5.0  | 1ouk |
| 1ouy | 5.3  | 6.6  | 6.9  | 3.7  | 8.1  | 9.1  | 1.8  | 0.6  | 3.0  | 8.7  | 8.3  | 3.6  | 1ouy |
| 1oz1 | 0.7  | 5.0  | 0.8  | 5.0  | 7.4  | 10.4 | 1.8  | 1.4  | 0.6  | 2.0  | 1.0  | 1.4  | 1oz1 |
| 1w83 | 4.3  | 5.7  | 5.9  | 7.4  | 1.4  | 1.4  | 7.7  | 8.1  | 9.6  | 0.9  | 6.0  | 6.0  | 1w83 |
| 1w84 | 2.5  | 1.5  | 1.6  | 3.0  | 1.8  | 2.7  | 2.0  | 1.7  | 1.8  | 0.8  | 0.6  | 1.9  | 1w84 |
| 1yqj | 2.7  | 1.1  | 2.1  | 6.3  | 7.7  | 7.0  | 1.4  | 1.3  | 4.6  | 2.4  | 1.9  | 0.5  | 1yqj |

#### TAMD Flexible Receptor Model 1 (Lowest Ligand RMSD for any of the Top 5 Scoring Pose)

|      | 1a9u | 1bl6 | 1bl7 | 1di9 | 1kv1 | 1kv2 | 1ouk | 1ouy | 1oz1 | 1w83 | 1w84 | 1yqj |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1a9u | 1.7  | 2.0  | 3.1  | 2.0  | 1.9  | 1.9  | 2.8  | 2.1  | 1.8  | 1.9  | 2.7  | 1.5  | 1a9u |
| 1bl6 | 1.2  | 1.4  | 0.9  | 1.5  | 1.4  | 1.4  | 1.8  | 2.0  | 1.8  | 1.6  | 1.4  | 2.1  | 1bl6 |
| 1bl7 | 1.2  | 1.6  | 1.3  | 1.7  | 2.0  | 1.9  | 1.4  | 1.2  | 1.6  | 2.3  | 1.7  | 1.3  | 1bl7 |
| 1di9 | 1.8  | 1.1  | 1.0  | 1.9  | 2.8  | 2.1  | 2.3  | 1.8  | 1.1  | 1.4  | 3.0  | 1.9  | 1di9 |
| 1kv1 | 1.3  | 1.9  | 2.1  | 3.8  | 1.5  | 1.6  | 1.9  | 1.0  | 1.9  | 1.7  | 1.5  | 1.8  | 1kv1 |
| 1kv2 | 2.0  | 1.6  | 1.6  | 1.8  | 0.9  | 1.2  | 1.5  | 1.3  | 1.4  | 1.9  | 1.7  | 1.8  | 1kv2 |
| 1ouk | 1.5  | 1.3  | 2.2  | 2.2  | 2.1  | 1.5  | 0.9  | 1.1  | 1.7  | 5.2  | 1.5  | 1.2  | 1ouk |
| 1ouy | 2.1  | 1.2  | 4.7  | 4.1  | 0.7  | 1.1  | 0.9  | 1.0  | 1.9  | 1.5  | 6.4  | 1.2  | 1ouy |
| 1oz1 | 0.5  | 1.2  | 1.0  | 1.1  | 1.6  | 1.6  | 1.0  | 0.9  | 0.9  | 0.7  | 0.8  | 1.1  | 1oz1 |
| 1w83 | 2.0  | 1.7  | 2.1  | 2.3  | 1.8  | 1.3  | 1.8  | 1.8  | 1.4  | 0.9  | 1.6  | 1.8  | 1w83 |
| 1w84 | 0.8  | 0.6  | 0.9  | 0.9  | 1.1  | 1.4  | 0.8  | 0.9  | 0.7  | 0.9  | 0.4  | 0.7  | 1w84 |
| 1yqj | 1.1  | 1.0  | 0.9  | 5.2  | 1.6  | 2.3  | 1.1  | 0.7  | 0.9  | 3.1  | 1.8  | 0.9  | 1yqj |

## **∆G (LIE) can Separate "Native-Like" Conf. From Ensemble**



### Flexible Docking "Success" For a Difficult Test Case

Dock ligand 1w83 into receptor 1ouy



**Reference structure (Gray)** Flexible Receptor (Blue) RMSD (1.8 Å) **Rigid Receptor** 

(Red) RMSD (8.1 Å)

Flexible Receptor docking pose forms 70% of the native Prot-Lig contacts

Self-Docking pose forms up to 85%

Dock ligand 1 ouy into receptor 1 w83



**Reference structure (Gray)** Flexible Receptor (Blue) RMSD (1.5 Å) (Red) RMSD (8.7 Å) **Rigid Receptor** 

Flexible Receptor docking pose forms 68% of the native Prot-Lig contacts

Self-Docking pose forms up to 90%

### Dock a series of 230 ligands (p38alpha inhibitors)



### **Conclusions & Future Directions**

We have validated our flexible docking algorithm using cross-docking.

We successfully demonstrate:

- 1. That reasonable receptor conformations are sampled regardless of the initial receptor conformation
- 2. The correct "native-like" receptor-ligand conformation can be selected from an ensemble of fully flexible complexes.
- 3. We can extend these results beyond simple studies of (N=12) to larger validation studies (N=230)

### Acknowledgements

NSF (OCI #0802650) to Michela Taufer, Charles L. Brooks III, David P. Anderson, Patricia J. Teller

Docking@Home:

http://docking.gcl.cis.udel.edu

NIH NRSA Postdoctoral Fellowship to Roger S. Armen (GM076836)

NIH Research Resource Center for the Development of Multiscale Modeling Tools for Structural Biology (RR12255)









Michela Taufer University of Delaware



David P. Anderson



Jianhan Chen Kansas State University



**Mike Crowley** National Renewable Energy Lab (NREL)



Patricia J. Teller University of Cal. Berkeley University of Texas El Paso



**Dan Price Glaxo Smith Kline** 



**Trilce Estrada** University of Delaware