
Automated Unit Balancing in the JSim Modeling System

Erik Butterworth1, Howard Jay Chizeck1,2, and James B. Bassingthwaighte1
Departments of Bioengineering1 and Electrical Engineering2, University of

Washington, Seattle WA 98195

Abstract

The combining of simpler models into larger ones which represent multi-scale and other
complex systems can be facilitated by using three methods which automate balance checking for
the unit conversions that inevitably result when disparate models are combined. These unit
balancing processes are: (1) the identification and rejection of model equations containing
invalid unit arithmetic; (2) the insertion of scalar multipliers into the equations to convert
existing units into fundamental units (in the SI or cgs systems); and (3) the assignment of units to
variables and constants whose units are undeclared, based upon context. Used together, these
three methods automate the otherwise tedious and error-prone process of manual unit balance
checking thus producing more accurate and readable models. The implementation of these
approaches, as in the JSim simulation modeling system, are general and could be incorporated
into other modeling platforms.

Introduction

Computer models of physiology are based on physical laws governing chemical reaction
kinetics, magnetic fields, hydrodynamics, ion fields, charge transfer, and other phenomena.
Equations that instantiate these models represent the relationships among terms denoting unitary
physical properties, such as mass, distance, force, pressure, chemical concentration, and potential
difference, along with terms that denote algebraic combinations of unitary properties, such as
meters/sec2 and gram/ml.

The physical properties denoted by the terms of the model equations may be expressed in various
units, at various scales: for example, pressure may be expressed as pascals, kilopascals,
atmospheres, torr or mmHg, bars and microbars, pounds per square inch, etc. Models often refer
to experimental values expressed in units that are convenient to use during the collection of data,
and vary in form or in the unit system used.

In complicated models, balancing the units in equations with many terms can be tedious and
time-consuming. In standard programming languages like FORTRAN, C, and Matlab, one
usually has to insert numeric unit conversion factors into the model code. Constructs such as
(meters/sec + meters/sec2) are inherently erroneous and have to be detected by the programmer.
This is difficult to do however. Although the units are not identified within the equations, each
group of terms to be summed in a particular equation must have identical units at identical

scales, and units to the left of an equal sign must be the same as those on the right. This is a
requirement for correctness in the equations. The methodology proposed here exploits that fact
that unit balancing follows rigid, logical rules and thus can be automated. Automated unit
balancing not only reduces error in individual equations, but by alerting the model builder to
imbalances, it can identify conceptual errors in their formulation.

"Unitary scaling invariance" is the property of a mathematical modeling system such that
numeric calculations remain correct under changes of unitary scale. Consider a variable V that is
specified in volts when a model is first developed, but is changed to millivolts later to conform to
usage for a particular application. A unitary scaling invariant modeling system responds by
adjusting all calculations using V to be correct under the new scaling. Unitary scaling invariance
is also a desirable property for component-based model building where new models are built
from a set of simpler modules previously constructed. If variables in the composite model are
represented at different scales (e.g. millivolts, microvolts) in the original component models,
then a unitary scaling invariant modeling system reconciles them automatically. This capability
thus improves prospects for retaining modularity when developing multiscale models.

JSim

JSim [1] is a Java-based [2] simulation system for building quantitative numeric models and
analyzing them with respect to experimental reference data. JSim was developed primarily for
generating model solutions for use in designing experiments and analyzing data in physiological
and biochemical studies, but its computational engine is general and equally applicable to
solving equations in physics, chemistry, and mechanics. JSim has been under development at the
National Simulation Resource for Mass Transport and Metabolism (NSR) since 1999. JSim uses
a model specification language, MML (for Mathematical Modeling Language) which supports
ordinary and partial differential equations, implicit equations, integrals, summations, discrete
events, and allows calls to external procedures. JSim's compiler translates MML into Java code
in which the numeric results are calculated. Within the JSim graphical user interface (GUI) users
adjust parameter values, initiate model runs, plot data, and perform behavioral analysis,
sensitivity analysis, parameter optimization for curve fitting. Alternatively one can use JSim's
command line interfaces (jsbatch and jsfim). JSim's capabilities are more advanced than previous
NSR software systems SIMCON [3], for simulation control, and XSIM [4] for X-terminal
operation. JSim source code, binaries (for Windows, Macintosh and Linux) and documentation
are available free for non-commercial use at http://physiome.org/.

For purposes of the describing JSim's automated unitary correction, the Mathematical Modeling
Language (MML) can be summarized as a collection of variable declarations and mathematical
equations using those variables. MML allows, but does not require, using physical units in the
declaration of the variables. If unitary correction is turned on (this is also optional) JSim's
compiler will perform the following operations while translating MML to executable Java code:

1. Equations containing improper unitary arithmetic (e.g. meters/sec + meters/sec2) will
generate error messages.

2. Unitary scaling factors will be inserted into calculations as needed (e.g. 6 cm/min = 1

mm/sec).
3. Model variables and constants whose units were not specified in MML will be assigned

units based upon context, wherever possible. For example, if A has been assigned the
units cm then when the expression (A+B) appears, it implies A and B have compatible
units, and thus B is assigned units cm.

4. Variables with no assigned units and not declared dimensionless are assigned
dimensionless.

Design goals

JSim's automated unitary correction system was developed to meet the following goals:

1. User specification of variable units should be simple, intuitive and unambiguous.
2. Variants from the basic SI and cgs units such as commonly used units for physiology and

systems biology must be predefined in terms of the basic units.
3. Modelers may define new units or abbreviations if desired.
4. Unitarily incorrect equations must be detected.
5. Unitary scaling factors must be automatically inserted into computations.
6. A change to a variable's unit assignment will cause computations to rescale correctly

(unitary scaling invariance).
7. The system should be accommodate existing models that do not use automated unitary

correction technology.

MML unit definitions and variable unit specification

Before an MML variable's unit can be specified, the units themselves must be defined. Units are
either fundamental or derived. Fundamental units are defined first. Derived units are defined in
terms of previously defined fundamental and derived units. The following MML example
fragment defines three fundamental and six derived units:

unit meter = fundamental, gram = fundamental, sec = fundamental;
unit m = 1 meter, cm = 1/100 meter;
unit g = 1 gram, kg = 1000 gram;
unit newton = 1 kg*m/sec^2;
unit dyne = 1 g*cm/sec^2;

Model writers can define units any way they wish but, for model-to-model compatibility, using
JSim's common unit definition file (nsrunit.mod, [5]) is strongly recommended. The file defines
121 units and 21 decade prefixes (milli, micro, etc.) following "Terminology for mass transport
and exchange" [6] and the CellML specification [7]. nsrunit.mod defines 7 fundamental units,
following the SI (MKS) convention: kilogram, meter, second, ampere, kelvin, mode, candela.
The choice to use MKS as fundamental instead of CGS is arbitrary, but of no consequence for
model writing since units in both systems are included. Modelers can define new fundamental or
derived units in addition to those in nsrunit.mod as needed. For example, many English system

units (gallons, miles, etc.) are not defined in nsrunit.mod. However, it is recommended in order
to make model code most easily understandable that modelers use the standard terminology in
nsrunit.mod wherever possible.

Once units are defined, units for MML variables are specified by combining units into algebraic
expressions using the multiplication (*), division (/) and exponentiation (^) operators. For
example:

import nsrunit; // import standard definitions
unit gallon = 3.7854118 liter; // define gallons, needed for this model
math main { // start of main calculation section
 real F = 5 gallon/min; // F is flow in gallons/minute
 real g = 9.8 m/sec^2; // g is gravitational acceleration
 ... // rest of model omitted

Unit compatibility and scaling factors

Two units are said to be compatible if one can be converted to another via a dimensionless
scaling factor. For translating millimeters per minute to centimeters per second the scaling factor
is 0.1 cm/mm divided by 60 sec/min or simply 0.1/60 since the components cm/mm are both
length measures and sec/min are both time measures and therefore are compatible. However,
moles per gram and moles per liter are not. Moles/gram times grams/ml would be compatible
with moles/liter. Each unit in a JSim model is represented internally by a Java data structure
consisting of a scale factor and a fundamental dimension vector. These are defined in double
precision:

double scale; // scale factor, e.g. 100 for cm when m is fundamental
double[] dim; // fundamental dimension vector

The scale factor is used for converting compatible units such as cm/sec and mm/min. The
dimension vector, whose length is equal to the number of fundamental units in the model (e.g. 7
for a model using only the nsrunit.mod definitions), is used for determining compatibility. Two
units are compatible if their dimension vectors are identical.

JSim calculates unit scale factors and dimension vectors using the following rules. For
fundamental units, the scale factor is set to 1.0 and the dimension vector is set to all zeroes
except for 1.0 in the vector element corresponding to the fundamental unit itself. In nsrunit.mod
for example, the 2nd fundamental unit is meters, so the dimension vector for meters is
[0,1,0,0,0,0,0]. For derived units, the scale factor and dimension vector are calculated using the
values of the units from which they were derived. The RULES below are applied in order of
standard algebraic precedence (parentheses first, then exponentiation, then multiplication &
division, with ambiguities resolved from left to right):

 RULES:

A) Multiplying by a constant (e.g. min = 60 sec): Multiply the original scale factor by the
constant, the dimension vector is unchanged.

B) Multiplying two units (e.g. cm*gram): Multiply the two original scale factors, add the
original dimension vectors element by element.

C) Dividing two units (e.g. cm/sec): Divide the two original scale factors, subtract the
original dimension vectors element by element.

D) Exponentiation (e.g. cm3): Raise the original unit's scale factor to the exponent, multiply
each original dimension vector element by the exponent.

Consider the processing of unit "grav" (representing gravitational acceleration) in following
example:

unit kg=fundamental, meter=fundamental, sec=fundamental;
unit cm = 1/100 meter;
unit grav = 980 cm/sec^2;

Exponentiation (sec2) has the highest precedence in the g definition expression. After that,
multiplication (980 cm) and division (cm/sec2) have equal precedence and are processed left to
right. Calculations for grav proceed as follows:

Unit Scale factor Dimension vector Rationale

cm .01 [0,1,0] previous definition

sec 1 [0,0,1] previous definition

sec2 1 [0,0,2] exponentiation (rule D)

980 cm 9.8 [0,1,0] constant multiply (rule A)

980 cm/sec2 9.8 [0,1,-2] unit multiply (rule C)

grav 9.8 [0,1,-2] new definition

Units are considered dimensionless if their dimension vector is uniformly zero. Units are said to
be compatible if their dimension vectors are identical (within a machine rounding error of 1e-7).
For example, accelerations in m/min2 and cm/sec2 would both have a dimension vector of
[0,1,2,0,0,0,0], although their scale factors (1/3600 and .01) would differ. However, speed (e.g.
cm/sec) would have a dimension vector of [0,1,1,0,0,0,0], and thus be incompatible with the
accelerations above.

Compatible units are converted by multiplying by the ratio of the scale factors. For example,
conversion from m/min2 to cm/sec2 is accomplished by multiplying by cm/m (=100 = 1/scale
factor) and dividing by sec2/min2 (=3600), with the result (cm/sec2)= (m/min2)/36.

Basic unitary correction of equations

MML models declare either "unit conversion on" or "unit conversion off". In the former case, the
compiler checks for unit compatibility in each algebraic operation, rejecting incompatible ones
and inserting appropriate any needed conversion factors into compatible ones. In the latter case,
compatibility is not checked and no conversion factors are introduced (i.e. units are only for
documentary purposes). The choice of unit conversion declaration is important because correct
equation formulation differs in the two cases. For example, if A (in meters) and B (in
centimeters) are equated, the correct MML code is as follows:

with unit conversion on with unit conversion off

A = B A = B/100

The remainder of this description will consider only with the case where unit conversion is on.
Unit declarations are optional for MML variables and constants. We will first describe
processing when units are declared for all variables, and later consider how to deal with missing
unit declarations.

JSim's compiler starts by parsing each model equation into a tree based on operator precedence.
MML operator precedence is similar to that of many computer languages (C, Java, etc.).
Precedence ambiguities are resolved left to right.

Operator Meaning

() parenthetical groupings

= equality

^ exponentiation

* , / multiplication, division

+ , - addition, subtraction

For example, consider the following model:

unit conversion on;
import nsrunit;
math example1 {
 real A = 2 meter;
 real B = 30 sec;
 real C = 1 min;
 real D cm/sec;
 D = A / (B + C);

}

Following the MML precedence rules, the equation for D is parsed into the following tree:

The tree consists of internal nodes (light blue) which represent operators and leaf nodes (dark
olive) which represent the four variables. Internal nodes have two children (left and right) in this
example, any positive number in the general case. Internal nodes are examined, depth first, for
unit compatibility. Addition and equality nodes require unitary compatibility of their children,
but division nodes do not. When compatibility is required, internal nodes are assigned the units
of either the leftmost or rightmost child, and an appropriate unitary scaling factor is inserted into
the tree. Where compatibility is not required, internal nodes are given a unit appropriate with the
operation (here, division). The choice of associativity (leftmost or rightmost child) is arbitrary,
but results in equivalent calculations, as shown below:

Resulting calculations are as follows:

Left associativity Right associativity

D=(A/(B+C*60))*100=20/9 D=(A/(B/60+C))*(5/3)=20/9

MML operator and function unitary conversion summary

The table below summarizes how the JSim compiler handles unitary conversion for MML's
predefined operators and functions.

Operators Unit of result Argument requirements

add(+), subtract(-), equals(=),
comparison(<, <=, > & >=),

remainder(rem(x,y)),
arctangent(atan(x,y))

leftmost child's unit unitary compatibility

absolute value: abs(x) same as argument none

Multiply (*), divide (/) see unit multiply/divide rules
A, B and C above none

Derivative (:) same as divide none

Power (^) see unit exponentiation rule D
above

base is unrestricted,
exponent must be

dimensionless

square root: sqrt(x) see unit exponentiation rule D
above with exponent=1/2 none

transcendental functions:
exp(x), log(x), sin(x),
sinh(x), arcsin(x), etc.

dimensionless argument must be
dimensionless

truncation: floor(x), ceil(x).
rounding: round(x) dimensionless argument must be

dimensionless

Table notes:

The dimensionless requirements for truncation and rounding is motivated by unitary scaling
invariance. For example, the following model will give a different value for B if A is declared as
0.5 kilogram instead of 500 grams, which should be equivalent:

real A = 500 gram;
real B = round(A);

The dimensionless argument requirement for transcendental functions is motivated by both

unitary scaling invariance and by their Taylor expansions, which are unbalanced if the argument
has non-trivial units, e.g.

exp(x) = 1 + x + x^2/2 + x^3/6 + ...

Radians are defined as dimensionless in nsrunit.mod for modeler convenience. The alternative
would be to require MML writers to convert every trigonometric function argument to radians,
which we consider verbose and awkward. Steradians are treated similarly.

Centigrade and Fahrenheit temperature scale conversions require additive factors that are not
handled by the methodology described here. JSim models use the Kelvin scale.

Handling undefined units

Using unit declarations for MML variables and constants is not absolutely required, and missing
units will be assigned by the compiler based upon equation context. In the following model, C
is automatically assigned units m/sec (to match the right hand side of the equation) and the
constant 1 will be assumed to be in seconds (to match B), and listed with values on the Input list,
resulting in the calculation of C=10 m/sec:

real A = 60 m;
real B = 5 sec;
real C = A/(B+1);

Such assignment carries risk, exemplified by the use of an unassigned 1 in the equation for C,
and it is better to assign units to all variables and parameters, as is required in the model
archiving markup language, CellML [7]. (The Systems Biology Markup Language SBML [8]
allows but does not require unit specification for variables.) The choice is a practical tradeoff
between user convenience, conciseness and unitary scale invariance. In JSim's MML, the above
formulation is acceptable shorthand. The completely specified equivalent model below makes
clear the writer's intention, using the unit sec within a parenthesis along with the 1:

real A = 60 m;
real B = 5 sec;
real C m/sec;
C = A / (B + (1 sec));

JSim's automated unit assignment algorithm proceeds as follows. A parse tree is generated for
each model equation and searched for internal nodes that require unitary compatibility (e.g.
addition, subtraction, equality). If one of the node's children has no unit assigned, it is assigned
the unit of the other child. If, after processing all nodes in this way, some nodes are still missing
unit assignments, one arbitrarily chosen variable or constant is assigned the dimensionless unit
and the entire process is repeated. Eventually all nodes are assigned units. However, it is possible
that variable units assigned in one equation may cause other equations to become unitarily
unbalanced. If so, the compiler aborts with a diagnostic error message.

Results and Discussion

Programming convenience: Modelers generally find the system easy to use. They do not need
the technical understanding of the internal calculations described above to balance units
properly. The system helps them find conceptual errors in their equations and allows them to
inter-mix variables without adding conversion factors. The absence of conversion factors makes
their code more readable.

Modelers prefer not having to explicitly assign units to every constant in a model, especially
when it is easily understood from the variable name or from the context of the equation. The
JSim compiler therefore assigns an appropriate unit, choosing the fundamental unit for it from
the context of the equation in which it is used, and using unit conversion. If a user prefers to
think of the particular parameter in his experimental units, then he can add the definition of this
unit to MML variable declaration and define it relative to units defined in nsrunits.mod. JSim's
compiler currently rejects models that incompatibly redefine units in nsrunits.mod, even if the
common definitions file is not explicitly imported. This bug is not profound, and will be
corrected in a future JSim version.

Conversion on or off?: Enabling automatic unit conversion is optional (“unit conversion on” or
“unit conversion off”), but virtually all modelers choose to enable it. The small amount of
additional work required to add unit declaration to one's MML is rewarded by the error detection
functionality described below.

Error detection and correction: Automated unitary correction helps find equation typos such as
missing terms or parentheses. This is especially important in a large model such as the
cardiovascular/respiratory model VS001 of Neal and Bassingthwaighte, a subset of which is
published [9]. (The whole model is available for free download [10]) VS001 is a closed loop
cardiopulmonary model composed of a four-chamber varying-elastance heart, a pericardium, a
systemic circulation, a pulmonary circulation, airway mechanics, baroreceptors, gas exchange,
blood gas handling, coronary circulation, peripheral chemoreceptors and selectable physiological
changes. The VS001 model code contains 846 equations relating 718 terms expressed in 64
different units.

Consider this example taken from the gas exchange and intracellular buffering part of the VS001
model: the expression in bold should be enclosed in parentheses, but is not, thus evoking an error
message identifying an imbalance in units and giving the line number which the error is found:

PBC_pc:t = (Fpc/Vpc)*(PBC_sc-PBC_pc)
 + kp5*CtCO2_ao*(Cheme-PBC_pc)*SHbO2_ao/(1+H_ao/K3bgh)
 + (1-SHbO2_ao)/(1+H_ao/K2bgh) - kp5*PBC_pc*H_ao*(SHbO2_ao/K6bgh
 + (1-SHbO2_ao)/K5bgh);

Omitting the parentheses results in an equation that is algebraically seemingly acceptable, but
unitary balance fails:

kp5*CtCO2_ao*(Cheme-PBC_pc)*SHbO2_ao/(1+H_ao/K3bgh) has units moles/m^3;

(1-SHbO2_ao)/(1+H_ao/K2bgh) is dimensionless, so adding the two quantities (as in lines 2 & 3
above) results in a unitary balance error. The error message identifies the first term of the third
line as having different units than the other parts of the equation. Automated unitary correction
thus pinpoints a problem that would be difficult to find by analysis of the model output. The
error message also identifies the nature of the units for the separate parts of the equation, but
does not go so far as to recommend where the parentheses should be placed.

JSim unit balance error messages arising from complicated algebraic expressions are sometimes
difficult to interpret. This is because unit balance is checked in terms of fundamental units (e.g.
kg/m/sec^2) while modelers usually think in terms of derived units (e.g. pascals). To address
this, JSim error messages provide both fundamental and derived unit representations of the
offending expressions. However, derived unit representations (unlike fundamental units
representations) are not unique, and any single chosen derived unit representation may not
correspond to modeler intuition. The current version of JSim (1.6.80) performs only minimal
simplification of derived unit expressions. More sophisticated simplification improvements in
future versions would improve error message readability. However, modeler typing mistakes
(see above) can easily result in algebraic expressions with non-intuitive derived unit
representation. In the future, a syntax-highlighting, unit-aware editor, allowing users to
interactively query the units for code fragments, may be the best solution for editing complex
models.

Utility for model reviewing: JSim's unit balance checking is a useful tool for preliminary
checking of models that are downloaded from model databases who's formats support unitary
assignment. The CellML library is larger but is at an earlier stage of curation. Units are now used
in the CellML files. Of the 312 available for download (as of April 2007), 60 pass the JSim unit
balance checks. However, we have not checked the resulting numerical solutions against the
original papers.

Many submitted papers contain unitary balance errors that are easily made evident by the
reviewer programming them in JSim. Authors can then be guided to fix the problems, which
frequently leads to modifying the illustrations. Finding all such errors without using a unit
balance checking system is difficult, a problem readily avoided when using JSim.

It is common knowledge that many published models are incorrect and cannot be reproduced.
Some merely lack unitarily balanced equations or have incomplete unit assignments. The number
of these models that are actually physiologically inaccurate due to unitary issues is difficult to
judge, but determining the answer requires a detailed and knowledgeable examination of each of
them.

A difficulty with some published models is that though they made be technically correct, they
will not be automatically verified for unitary balance, if they contain transcendental functions of
variables with units. Because JSim requires that these be dimensionless, an “error” is detected,
and each one of these occurrences must currently be “corrected” by making the argument of the
function formally dimensionless (e.g. for sin(V) with V in mV, one writes “sin(V/(1 mV))
before the full model can be compiled.

The expected usage is to normalize a transcendental argument via a reference value. Sinusoidal
functions of time are ordinarily no problem since they are generally written

sin(2*PI*f*t)

where f is a frequency with units of reciprocal time and t is time. The problem comes with such
expressions as

exp((V-V0)/10 - 1)

where V and V0 are in millivolts, so this requires rewriting

exp((V-V0)/(10 mV)-1)

to render the argument dimensionless. An option to allow a relaxation of this requirement will be
incorporated in a future JSim release.

Modular Modeling in Multiscale Systems: A particular virtue of using unit-balanced equations
is that when two or more smaller JSim unit correct models are combined into a larger model,
there are no complications matching units between the components, since conversion factors are
automatically inserted. The automated coupling of a set of modules into a composite model
requires also that a common ontology be used, that distinct regions, be identified and then that
the equations containing variables from more than one module be combined properly. In this
situation the component unit definitions directly facilitate the process. A preliminary success in
automated combining of two modules has been achieved, and so is feasible.

JSR 275 [11] is a specification, currently in development, for handling physical units in the Java
language that may be incorporated in a future version of the Java language. If so, it will be a
valuable addition to the Java language for reliably engineering large systems that deal with
quantities in a variety of physical units. In contrast with JSim's current facilities, use of JSR 275
requires significant programming expertise, is rather verbose, provides no facilities for
automated unit assignment, and requires complete rewriting of existing computational code.

Conclusions:

Building upon the work of others is fundamental to progress in science. Computer modeling and
archiving is marvelously efficient for preserving precise descriptions of a current scientific
working hypothesis, subjecting it to repeated evaluation tests, and identifying its shortcomings
and alleviating them. For quantitative integrative multiscale models of complex systems, models
so preserved are modules to be incorporated into more all-encompassing models which embrace
more phenomena and are tested against larger numbers of data sets. Guaranteeing unitary
balance and scale invariance in the reference literature and in the models which are the future
subsidiary modules is therefore a worthy goal. JSim's unit balance checking is one tool for this
job, and other simulation systems will undoubtedly be modified to include this powerful feature.
The algorithms described herein are adaptable to other quantitative modeling systems so long as

model variable can be assigned physical units.

References:

1. Raymond GM, Butterworth E, and Bassingthwaighte JB. JSim: Free software package for
teaching physiological modeling in research. Exper Biol 2003 280.5, p102, 2003., and
www.physiome.org

 2. Gosling J and McGilton H, "The Java language environment a white paper," May 1996.
http://java.sun.com/docs/white/langenv.

3. Knopp TJ, Anderson, DU, and Bassingthwaighte JB. "SIMCON--Simulation control to
optimize man-machine interaction," Simulation 14: 81-86, 1970.

4. King RB , Butterworth EA, Weissman LJ, and Bassingthwaighte JB., "A graphical user
interface for computer simulation. FASEB J: 9: A14, 1995.

5. NSR Units: http;//physiome.org/jsim/docs/MML_Units_NSR.html

6. Bassingthwaighte JB et al, "Terminology for mass transport and exchange. Am. J. Physiol.
Heart Circ. Physiol. 250: H539-H545, 1986.

7. Cuellar A et al, "An Overview of CellML 1.1, a Biological Model Description Language,"
Simulation 79: 740-747, 2003. DOI: 10.1177/0037549703040939.

8. Hucka ML, Finney A, Sauro HM, Bolouri H, Doyle JC, and Kitano H. The system biology
markup language (SBML) a medium for representation and exchange of biochemical network
models. Bioinformatics 19(4): 524-531, 2003. and http://sbml.org/index.psp

9. Neal ML and Bassingthwaighte JB. Subject-specific model estimation of cardiac output and
blood volume during hemorrhage. Cardiovasc Eng 7: 97-120, 2007.

10. www.physiome.org/model/doku.php?id=Integrative_Physiology:Highly-
integrated_human_with_interventions:model_detail&s=vs001)

11. Java units specification: https://jsr-275.dev.java.net/

