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Introduction
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Imaging: Exploring the Mouse Brain Network
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• Imaging: Knife-Edge Scanning Microscope (KESM, Mayerich et al. 2008),

Serial Block-Face Scanning Electron Microscope (SBF-SEM, Denk and

Horstmann 2004), and Array Tomography (Micheva and Smith 2007).

• Magnetic Resonance Microscopy (MRM) data: from UCLA.

Image source: http://www.mouseatlas.org/data/mouse/stages/t47/view, http://www.nervenet.org/papers/Cerebellum2000.html
∗SBF-SEM image source: Gatan http://www.gatan.com/sem/3view.php

†MRM image source: Bruker http://www.bruker-biospin.com/biospec_117_16_usr.html?&L=0
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Analysis: From Raw Image Stack to Geometric

Reconstruction

KESM Golgi KESM Nissl

SBF-SEM (Denk and Horstmann 2004) Array Tomography

• A stack of images needs to be turned into geometric information

(reconstruction) before it can be analyzed further.
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Integration: Synapses to Circuits to Brain Networks
Synapse Level

Array Tomography
SBF−SEM Array Tomography
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System LevelCircuit Level

Once the reconstruction is complete, we need to infer how the functions link:

• Nanoscale: Synapses

• Microscale: Local circuits and modules

• Macroscale: Cortical maps and major nuclei
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Imaging
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Physical Sectioning Microscopy

A need to go beyond hundreds of micrometers in volume (limit in confocal and

multi-photon microscopy): Physical sectioning

Method Resol. (x/y) Resol. (z) Volume Modality Time

All-Optical Hist. 0.5 µm 1 µm 1 cm3 Fluorescence ∼900 hours

KESM 0.3–0.6 µm 0.5–1 µm 1 cm3 Bright field, ∼100 hours

Fluorescence∗

Array Tomography ∼0.2 µm 0.05–0.2 µm ∼1003 µm3 Fluorescence, N/A

EM

SBF-SEM ∼0.01 µm ∼0.03 µm ∼5003 µm3 EM N/A

ATLUM ∼0.01 µm 0.05 µm ∼2.153 mm3 EM N/A
∗Expected in the near future.

ATLUM (Hayworth and Lichtman 2007); All-Optical Histology (Tsai et al. 2003)
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Knife-Edge Scanning Microscopy

• Stair-step cutting algorithm allows sectioning and imaging of whole mouse

brains at submicrometer resolution.

• Fully automated control software developed in-house.
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Progress in Sectioning and Imaging with KESM

• One whole India-ink-stained mouse brain.

• One whole Golgi-stained mouse brain (almost complete).

• Nissl-stained mouse brain: olfactory bulb, cortex (selective), cerebellum,

brainstem and spinal cord,
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Imaging Results

Nissl (Cortex) India ink (Spinal cord) Golgi (Pyramidal cell)

Golgi (Cortex) Golgi (Cerebellum) Golgi (Purkinje cell)
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Array Tomography

• Repeated washing and staining allows perfectly registered volume data

from multiple staining modalities.

• Progress: sectioned and imaged selected mouse, zebra fish, and human

brain tissue samples.
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Imaging Results

• Rhodamine anti-synapsin I (red), showing putative synapses; DAPI-DNA

(blue), showing DNA; and FITC anti-GFP (green) showing detailed

structure of the soma, dendrites and its spines, and axons.
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Analysis
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Reconstruction: Tracing in 2D
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• Moving window with cubic tangential trace spline method.

• Investigates pixels only on the moving window border and on the

interpolated splines for fast processing.
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Tracing Results

Seed Can et al. (1999)

Haris et al. (1999) Our method15



Performance

• Accuracy tested based on synthetic data (by varying fiber width).

• Much more accurate compared toe competing approaches such as Can

et al. (1999).
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Reconstruction: Tracing in 3D

Match!
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• Generalization of the moving window approach to 3D.

• Use a moving sphere and trace along points on the surface of the sphere.

• Use graphics hardware (GPU) for fast matrix operations to find slices that

have the optimal fiber cross-section shape.
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Tracing Results

Spinal cord vasculature (KESM)

Neuron (Array Tomography, tectum) Vasculature (KESM, cerebellum)
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Performance
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Performance figures demonstrate the speedup obtained by using GPU

computation.

• The use of GPU gives an order-of-magnitude reduction in computation

time.

• Speedup achieved by using the full capacity of GPUs show an almost

20-fold speedup compared to single-core CPU-based runs.
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Preliminary Branching Statistics (vasculature)

Sample Statistics from Reconstructed KESM Brain Vasculature Data (1 mm3 volume)

Region Segments Length Branches Surface Volume Volume

5 5 (mm) (mm2 ) (mm3 ) (% of total)

Neocortex 11459.7 758.5 9100.0 10.40 0.0140 1.4%

Cerebellum 34911.3 1676.4 19034.4 20.0 0.0252 2.5%

Spinal Cord 36791.7 1927.6 26449.1 22.2 0.0236 2.4%

• Geometric structures extracted using the automated reconstruction

algorithms allow us to conduct quantitative investigation of the structural

properties of brain microstructures.
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Integration
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Integrating Theme: Time and Prediction
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• Synapse level: facilitating synapses for delay compensation (Lim and

Choe 2008).

• Circuit level: propagation of predictive preactivations (Choe 2004; Yu and

Choe 2005).

• System level: sensorimotor integration for internal understanding (Choe

et al. 2007), evolutionary advantage of more predictable internal dynamics

(Kwon and Choe 2008).
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Integrating Theme (cont’d)

Even though the above are about dynamical properties of brain function,

accurate system-level anatomy can provide good insights:

• Synapse level: Array Tomography can be used to investigate distribution

of certain molecular markers involved in facilitating synapses.

• Circuit level: Axonal length and diameter can be used to estimate

dynamical parameters such as latency.

• System level: Connectivity between sensory and motor maps can be

investigated at the system level.
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Multi-scale Data Integration Environment
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− Text−based annotations
−annotation sets/grouping (for 3D)
−flood−fill, coloring
−points, polylines, polygon, 

− Points/regions of interest

− Zoom
− Text−based queries

− Coordinate system
− Metrics
− Controls

Navigation

Stereo Viewing

• Multi-scale investigation requires a data browsing and annotation

environment that integrates multiple scales and informations sources

seamlessly.

• A cohesive framework is under development for integrating multi-scale data

into a single informatics platform.

• The platform can also facilitate data and model sharing.
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Wrap-Up
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Conclusion

• Understanding brain function requires a multi-scale approach.

• Innovative microscopy technologies are enabling a data-driven multi-scale

investigation linking the microstructure to system

• The massive data can only be effectively understood through automated

computational algorithms.

• Integrating the multiple scales depend on models based on plausible

theories and the ability to explore the data in an integrative environment.
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