Multiscale Imaging, Analysis, and Integration of Brain Networks

MSM PI Meeting August 6, 2008

Yoonsuck Choe Brain Networks Laboratory Department of Computer Science Texas A&M University choe@tamu.edu, http://research.cs.tamu.edu/bnl

Collaborators: Bruce H. McCormick, Louise C. Abbott, John Keyser, (**Texas A&M**); Stephen J. Smith, Kristina Micheva (**Stanford**); Arthur Toga (**UCLA**)

Introduction

- Imaging: Knife-Edge Scanning Microscope (KESM, Mayerich et al. 2008), Serial Block-Face Scanning Electron Microscope (SBF-SEM, Denk and Horstmann 2004), and Array Tomography (Micheva and Smith 2007).
- Magnetic Resonance Microscopy (MRM) data: from UCLA.

Analysis: From Raw Image Stack to Geometric

Reconstruction

KESM Golgi

KESM Nissl

SBF-SEM (Denk and Horstmann 2004)

Array Tomography

• A stack of images needs to be turned into geometric information (*reconstruction*) before it can be analyzed further.

Integration: Synapses to Circuits to Brain NetworksSynapse LevelCircuit LevelSystem Level

Array Tomography SBF–SEM

KESM Array Tomography

MRM, KESM

Once the reconstruction is complete, we need to infer how the functions link:

- Nanoscale: Synapses
- Microscale: Local circuits and modules
- Macroscale: Cortical maps and major nuclei

Imaging

Physical Sectioning Microscopy

A need to go beyond hundreds of micrometers in volume (limit in confocal and multi-photon microscopy): **Physical sectioning**

Method	Resol. (x/y)	Resol. (z)	Volume	Modality	Time
All-Optical Hist.	0.5 µm	1 µm	1 cm 3	Fluorescence	\sim 900 hours
KESM	0.3–0.6 μm	0.5–1 μm	1 cm 3	Bright field,	\sim 100 hours
				Fluorescence*	
Array Tomography	\sim 0.2 μ m	0.05–0.2 μm	\sim 100 3 μ m 3	Fluorescence,	N/A
				EM	
SBF-SEM	\sim 0.01 μ m	\sim 0.03 μ m	\sim 500 3 μ m 3	EM	N/A
ATLUM	\sim 0.01 μ m	0.05 μm	\sim 2.15 3 mm 3	EM	N/A

* Expected in the near future.

ATLUM (Hayworth and Lichtman 2007); All-Optical Histology (Tsai et al. 2003)

Knife-Edge Scanning Microscopy

dim: 4036x3000 res: ex1 rpt: 0 disp: 3.8204 feet vouvideat 4096v9000 feet	Load	Site Curring Speed
		Lieste India nik spinal cord Upen Width: DB Mode: RANDOM
		Stage Controller System 0.001 Average
	Snap	Stage Parameters Setting Length: 16 Deviation:
	Live	Save Images Valt:
	UnLive	Slice / Plank: 100 -Stage Movement
	Save	Cut 1 Sice Cut One Bank Stair Plank Depth: 1000 Lift Height:
		Stair Step Cutting Stair Plank Width: 25 Return Speed:
		Start Current Cot 0 Pause Start Current Cot Current Cot Current Cot Current Cot Current Cot Right
		Current Z: 0 Block Width: 30 Slice Thickness: 0
		Column Width: 0.3 Plank Depth(sice):
		X 00000 00000 Park Sesion STOP Y 0.0000 0.0000 Exable XY72 Exable XY72 Z 0.0000 Disable XY72 RESET Exable XY72 Data Capture System 1 Exable XY72 RESET
The second second		Launch Image Capiture System
		Debug Messages
		107:1130 PH: Faced assess tool 39 assess 44 107:1130 PH: Learning Dia Capitar Dia Philippi Dia Capitar Dia Philippi Dia Capitar Dia Philippi Dia Capitar App. Dia Philippi Dia Capitar App.

- Stair-step cutting algorithm allows sectioning and imaging of whole mouse brains at submicrometer resolution.
- Fully automated control software developed in-house.

Progress in Sectioning and Imaging with KESM

- One whole India-ink-stained mouse brain.
- One whole Golgi-stained mouse brain (almost complete).
- Nissl-stained mouse brain: olfactory bulb, cortex (selective), cerebellum, brainstem and spinal cord,

Imaging Results

Nissl (Cortex)

Golgi (Cortex)

India ink (Spinal cord)

Golgi (Cerebellum)

Golgi (Pyramidal cell)

Golgi (Purkinje cell)

Array Tomography

- Repeated washing and staining allows perfectly registered volume data from multiple staining modalities.
- Progress: sectioned and imaged selected mouse, zebra fish, and human brain tissue samples.

Imaging Results С SEM Tubulin SEM Α GABA SNAP-25 β-actin G S В SEM + Tubulin Tubulin + GABA β-actin + SNAP-25

 Rhodamine anti-synapsin I (red), showing putative synapses; DAPI-DNA (blue), showing DNA; and FITC anti-GFP (green) showing detailed structure of the soma, dendrites and its spines, and axons.

Analysis

Reconstruction: Tracing in 2D

- Moving window with cubic tangential trace spline method.
- Investigates pixels only on the moving window border and on the interpolated splines for fast processing.

Tracing Results

Seed

Can et al. (1999)

15

Performance

- Accuracy tested based on synthetic data (by varying fiber width).
- Much more accurate compared toe competing approaches such as Can et al. (1999).

Reconstruction: Tracing in 3D

Template matching

Tangential slices

Templates

- Generalization of the moving window approach to 3D.
- Use a moving sphere and trace along points on the surface of the sphere.
- Use graphics hardware (GPU) for fast matrix operations to find slices that have the optimal fiber cross-section shape.

Tracing Results

Spinal cord vasculature (KESM)

Neuron (Array Tomography, tectum)

Vasculature (KESM, cerebellum)

Performance

Run time

Speedup

Performance figures demonstrate the speedup obtained by using GPU computation.

- The use of GPU gives an order-of-magnitude reduction in computation time.
- Speedup achieved by using the full capacity of GPUs show an almost 20-fold speedup compared to single-core CPU-based runs.

Preliminary Branching Statistics (vasculature)

Sample Statistics from Reconstructed KESM Brain Vasculature Data (1 mm³ volume)

Region	Segments	Length	Branches	Surface	Volume	Volume
5	5	(mm)		(mm^2)	(mm^3)	(% of total)
Neocortex	11459.7	758.5	9100.0	10.40	0.0140	1.4%
Cerebellum	34911.3	1676.4	19034.4	20.0	0.0252	2.5%
Spinal Cord	36791.7	1927.6	26449.1	22.2	0.0236	2.4%

 Geometric structures extracted using the automated reconstruction algorithms allow us to conduct quantitative investigation of the structural properties of brain microstructures.

Integration

Integrating Theme: Time and Prediction

- **Synapse level:** facilitating synapses for delay compensation (Lim and Choe 2008).
- **Circuit level:** propagation of predictive preactivations (Choe 2004; Yu and Choe 2005).
- **System level:** sensorimotor integration for internal understanding (Choe et al. 2007), evolutionary advantage of more predictable internal dynamics (Kwon and Choe 2008).

Integrating Theme (cont'd)

Even though the above are about dynamical properties of brain function, accurate system-level anatomy can provide good insights:

- **Synapse level:** Array Tomography can be used to investigate distribution of certain molecular markers involved in facilitating synapses.
- **Circuit level:** Axonal length and diameter can be used to estimate dynamical parameters such as latency.
- **System level:** Connectivity between sensory and motor maps can be investigated at the system level.

Multi-scale Data Integration Environment

- Multi-scale investigation requires a data browsing and annotation environment that integrates multiple scales and informations sources seamlessly.
- A cohesive framework is under development for integrating multi-scale data into a single informatics platform.
- The platform can also facilitate data and model sharing.

Wrap-Up

Conclusion

- Understanding brain function requires a multi-scale approach.
- Innovative microscopy technologies are enabling a data-driven multi-scale investigation linking the microstructure to system
- The massive data can only be effectively understood through automated computational algorithms.
- Integrating the multiple scales depend on models based on plausible theories and the ability to explore the data in an integrative environment.

Acknowledgments

- People:
 - Texas A&M: Y. Choe, B. McCormick, J. Keyser, L. C. Abbott, D. Mayerich, D. Han, J. Kwon, Y. H. Bai, D. C.-Y. Eng, H.-F. Yang, G. Kazama, K. Manavi, W. Koh, Z. Melek, J. S. Guntupalli, P.-S. Huang, A. Aluri, H. S. Muddana
 - Stanford: S. J. Smith, K. Micheva, J. Buchanan, B. Busse
 - UCLA: A. Toga
 - Others: T. Huffman (Arizona State U), R. Koene (Boston U), Bernard Mesa (Micro Star Technologies)
- Funded by: NIH/NINDS (#1R01-NS54252); NSF (MRI #0079874 and ITR #CCR-0220047), Texas Higher Education Coordinating Board (ATP #000512-0146-2001), and the Department of Computer Science, and the Office of the Vice President for Research at Texas A&M University.
- In memory of Bruce H. McCormick (1928–2007).

References

- Can, A., Shen, H., Turner, J. N., Tanenbaum, H. L., and Roysam, B. (1999). Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. *IEEE Transactions on Information Technology in Biomedicine*, 3:125–138.
- Choe, Y. (2004). The role of temporal parameters in a thalamocortical model of analogy. *IEEE Transactions on Neural Networks*, 15:1071–1082.
- Choe, Y., Yang, H.-F., and Eng, D. C.-Y. (2007). Autonomous learning of the semantics of internal sensory states based on motor exploration. *International Journal of Humanoid Robotics*, 4:211–243. http://dx.doi.org/10.1142/S0219843607001102.
- Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. *PLoS Biology*, 19:e329.
- Haris, K., Efstratiadis, S., Maglaveras, N., Pappas, C., Gourassas, J., and Louridas, G. (1999). Model-based morphological segmentation and labeling of coronary angiograms. *IEEE Trans. Med. Imag.*, 18:1003–1015.
- Hayworth, K., and Lichtman, J. W. (2007). Automatic Tape-Collecting Lathe Ultramicrotome (ATLUM), http://www. mcb.harvard.edu/lichtman/ATLUM/ATLUM_web.htm.
- Kwon, J., and Choe, Y. (2008). Internal state predictability as an evolutionary precursor of self-awareness and agency. In *Proceedings of the Seventh International Conference on Development and Learning.*

- Lim, H., and Choe, Y. (2008). Delay compensation through facilitating synapses and its relation to the flash-lag effect. *IEEE Transactions on Neural Networks*. In press.
- Mayerich, D., Abbott, L. C., and McCormick, B. H. (2008). Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain. *Journal of Microscopy*, 231:134–143.
- McCormick, B. H., Abbott, L. C., Mayerich, D. M., , Keyser, J., Kwon, J., Melek, Z., and Choe, Y. (2006). Full-scale submicron neuroanatomy of the mouse brain. In *Society for Neuroscience Abstracts*. Washington, DC: Society for Neuroscience. Program No. 694.5. Online.
- Micheva, K., and Smith, S. J. (2007). Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. *Neuron*, 55:25–36.
- Tsai, P. S., Friedman, B., Ifarraguerri, A. I., Thompson, B. D., Lev-Ram, V., Schaffer, C. B., Xiong, Q., Tsien, R. Y., Squier, J. A., and Kleinfeld, D. (2003). All-optical histology using ultrashort laser pulses. *Neuron*, 39:27–41.
- Yu, Y., and Choe, Y. (2005). Asymptotic stability analysis of the thalamocortical circuit. In *Society for Neuroscience Abstracts*. Washington, DC: Society for Neuroscience. Program No. 274.23. Online.