Data Processing for Serial Sectioning Microscopy of Neural and Vascular Microstructure

MSM WG3 Discussion

August 24, 2007

Yoonsuck Choe Brain Networks Laboratory Department of Computer Science

Texas A&M University

choe@tamu.edu, http://research.cs.tamu.edu/bnl

Collaborators: Bruce H. McCormick, Louise C. Abbott, John Keyser, David Mayerich, Jaerock Kwon, Zeki Melek (Texas A&M); Stephen J. Smith, Kristina Micheva, Brad Busse (Stanford); Arthur Toga (UCLA)

Project Overview: Mouse Brain Microstructure

Micro

Nano

Macro

BRUKER

KESM, Optical, 0.3–0.6 µm

Texas A&M

* SBF-SEM, EM, 20–30 nm Stanford

[†]MRM, MR, \sim 60 μ m UCLA

- Surveying mouse brain microstructures
- Three imaging modalities, three scales, one hard problem.
- Imaging effort focused on KESM, and SBF-SEM (+ Array Tomography).

* SBF-SEM image source: Gatan http://www.gatan.com/sem/3view.php 2/25

KESM and SBF-SEM: Serial-Sectioning Imaging

KESM

SBF-SEM

- Serial, physical sectioning for high *z*-axis resolution.
- Immune to blurring artifacts in optical sectioning such as confocal microscopy or multiphoton microscopy.

Array Tomography: Multimodal Serial-Sectioning Imaging

Micheva and Smith (2007)

- Serial sections precisely aligned on microscoe slide.
- Multiple fluorescent markers imaged at a time.
- EM as a final step to register ultrastructure to molecular markers.

• Mouse brain stem and cerebellum.

 Cross section of mouse brain stem and spinal cord (PS: pial surface; *: central canal; V: blood vessel).

• Mouse olfactory bulb.

• Mouse olfactory bulb (vasculature stained with india ink).

Typical Data: Golgi Stain, KESM

Typical Data: Golgi Stain, KESM

oo micro

• Mouse cortex (sagital section).

Typical Data: Heavy-metal Stain, SBF-SEM

Zebra fish tectum

• Heavy-metal staining of extracellular matrix.

Typical Data: Array Tomography

Blue: DAPI-DNA (cell nuclei); Red: Anti-synapsin I (synapses);
Green: FITC anti-GFP (neuron morphology); Scalebar: 10 μm.

Typical Data Voulmes

KESM Golgi

SBF-SEM (Denk and Horstmann 2004)

KESM Nissl

Array Tomography

• A stack of images are obtained, representing a volume of brain tissue.

Noise in Obtained Image Data

The source of noise are typically:

- Optical/illuminance irregularities (left, red arrow)
- Knife defects (left, white arrow)
- Chatter (undesired vibration) in cutting process (right)

No other random noise, optical noise (blurring of background), or registration issues. Some issues with quality of staining.

Fixing Optical/Illuminance Irregularities and Knife Defect

Before

After

• The irregular bands are also present in blank runs, so images obtained from the blank run are used to subtract out these irregularities.

Fixing Knife Chatter Artifacts

A small rectangular sliding window is used to find local mean intensity which is then used to scale the pixel value at the center of the window.

Before

3D Reconstruction

Golgi (Neuron)

Nissl (Soma)

Nissl (Vasculature)

Nissl (Vasculature)

- Thresholding and iso-surface reconstruction can be used for sparse data.
- This approach does not work well for densly packed objects.
- This approach does not result in morphological models.

3D Reconstruction: Vector Tracing

(Al-Kofahi et al. 2002)

- Template-based vector tracing algorithm: computationally efficient.
- Templates are like orientable paddles (yaw, pitch, roll, translation, and distance from central axis).

3D Reconstruction: Vector Tracing

• Virtual sectioning along plane perpendicular to fiber path (local coordinate system), used with vector tracing algorithm. Level-set methods for segmentation.

3D Reconstruction: Vector Tracing Results

- Partial reconstruction of zebra fish data is shown.
- The method is equally applicable to Golgi KESM neural morphology data, and Nissl KESM neurovasculature data.

Template-Based Fiber Tracing

Predictor-corrector algorithm based on fast template matching.

- Predictor: Obtain multiple virtual slices (frames) of planes tangential to the sphere centered at the current tracking point, and pick best match with the Gaussian template.
- Corrector: Correct scale (diameter) and offset using the same template-based approach.

Use GPU (graphical processing unit) to vastly speed up computation.

Template-Based Fast Tracing

• Tracing microvasculature in the mouse olfactory bulb.

Template-Based Fast Tracing: Results

On-going Work and Future Directions

- Improved en bloc staining methods.
- Chatter abatement in KESM sectioning.
- Superresolution methods to link SBF-SEM and KESM.
- Texture segmentation of Nissl KESM data to link KESM and MRM-based mouse brain atlas.
- Morphological model and model fitting.
- 3D reconstruction and validation.
- Databasing reconstructed data and statistical quering.
- Integrated software environment and processing pipeline.
- Interactive, selective visualization using self-orienting surfaces.

Acknowledgments

- Sponsors: NIH/NINDS #1 R01 NS 54252; NSF-MRI #0079874; Texas ATP-000512-0146-2001; Office of Vice President for Research and Dept. of CS, Texas A&M
- Project Personnel:
 - Texas A&M: Bruce H. McCormick, Louise C. Abbott, John Keyser, David Mayerich, Jaerock Kwon, Zeki Melek, Donghyeop Han, Yoon H. Bai, Jyothi S. Guntupalli, Pei-San Huang.
 - Stanford: Stephen J. Smith, Kristina Micheva, Brad Busse
- Contributors: Charles A. Taylor, R. Y. Arakaki (Stanford); Arthur Toga (UCLA); Winfried Denk (Max Planck)

Image source: http://www.mouseatlas.org/data/mouse/stages/t47/view

References

- Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., and Roysam, B. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. *IEEE Transactions on Information Technology in Biomedicine*, 6:171–187.
- Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. *PLoS Biology*, 19:e329 [Epub ahead of print].
- McCormick, B. H., Abbott, L. C., Mayerich, D. M., , Keyser, J., Kwon, J., Melek, Z., and Choe, Y. (2006). Full-scale submicron neuroanatomy of the mouse brain. In *Society for Neuroscience Abstracts*. Washington, DC: Society for Neuroscience. Program No. 694.5. Online.
- Micheva, K., and Smith, S. J. (2007). Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. *Neuron*, 55:25–36.