Lung Modeling Based on Multiscale Data

Andres Kriete School of Biomedical Engineering, Science and Health Systems Drexel University, Philadelphia 10/2007

Collaborators: Robert Kunz and team (Penn State), Viraj Shah (Drexel Biomed), Uday Kiran Thummalapalli (Drexel Biomed) Andreas Schmidt (Medical School, Giessen), Andreas Zidowitz (Mevis, Bremen)

Content

- Introduction
- Structural modeling of mammalian lung
- Functional simulation
- Results and interpretation
- Human lung
- Special Preparations and HRCT imaging
- Towards disease models

Lung Model with Dichotomous Branching

- 12 branching generations
- Resembles trumpet model by Weibel
- Function?
- Goal is to develop more realistic multiscale models
- We started with a (less complex) rat lung, developed key concepts and implement them for the development of a human lung model.

2-Level Structural Hierarchy of Bronchial Tree

Macro: conductive part

Conductive 3D Model based on Casts

This model of rat lung has 2000 bronchioli terminalis, to which respiratory units need to be attached

Visualization of Respiratory Units (Acini):

Definition of ROIs based on serial histological sections

Confocal Imaging

Problems: High Resolution brings along narrows field of view, solution is in the image fusion of adjacent field of views. Dense, sponge-like packed respiratory units make it difficult to outline boundaries.

Image Segmentation, Region Growing

To identify the internal structure and boundary of respiratory units a 3D regiongrowing method is implemented, seed point is the bronchiolus terminalis (*). Misalignement can easily attach wrong structures, such as from adjacent units. Red = ducts, green = alveoli

3-D Reconstruction of a Respiratory Unit

Based on:

- 13 thick serial sections
- 7 confocal sections
- montage 3x3 images
- total of 819 images
- analytical volume rendition with embedded geometry

Volume Distribution of Alveoli in Respiratory Units:

variability in size is considered by different types

Distribution of Alveoli in modeled Acini

Workflow Overview

Factors Contributing to Mass Transport

I(j) = length of segment j, a = area, S(v) = surface-to-volume ratio, K = mass transport coefficient, C = average gas concentration AK Biomed

Functional Simulation

Oxygen Uptake of Specific Acini

Summary

- Each breathing amplitude generates a typical pattern of gas distribution
- Each respiratory unit receives the same amount of ventilation, but the effective ventilation (O2 uptake) is different for each unit
- The difference in O2 uptake solves the paradoxon of Weibel, which predicts a morphometrically determined diffusion capacity to be 3-4 times higher than the physiologically required capacity

3 Structural Levels for a Hybrid Human Model

III. Respiratory units

CT Imagery and Sceletonization

Segmentation and 3D Region-Growing

CT vs HRCT

HRCT of fixed lung

Volume Rendering of Cast (0.35 mm resolution)

There are 1453 bronchi at the 17th order.

We statistically analyzed 726 branches, the results allow us to define branching patterns depending on branching order.

Modeling using a space-filling algorithm

Artifically pruned branch is regrown to test algorithm

Micro-CT for High-Resolution Imaging of Lung Tissue

- microfocus tube with 5-8 micrometer diameter
- object is rotated
- reconstructions from projections
- Used to analyze the architecture of respiratory units

Imaging Lung Parenchyma with Micro-CT

Size about 5x5x5 mm

Lung tissue of an "old" person, with aging emphysema AK Biomed

Hybrid Multiscale Model

- 1) CT for main bronchi
- 2) CT defines geometry and outer shape of lung boundaries are defined to model intermediate branches properly with a space-filling algorithm
- 3) Addition of respiratory units, replicated throughout

Simulation of Gas Transport

Model reaches stable conditions after 20 breathing cycles

Patient-Individual Modeling

left: Clinical Imaging, right: Simulated

Emphesymatic conditions of the respiratory system

	Definition	Cause	Effects
EMPHYSEMA	Pulmonary emphysema: The air sacs (alveoli) of the lungs are enlarged and damaged, which reduces the surface area for the exchange of oxygen and carbon dioxide.	Normal lung tissue contains: Over-expansion of alveolar sacs leads to: •Loss of elasticity •Loss of surface area •Loss of lung capacity •Insufficient take-up of oxygen •It is particularly common in men in Britain and is associated with chronic bronchitis, smoking, and advancing age.	Severe emphysema causes breathlessness/severe breathing difficulty, which is made worse by infections.

Different types of Emphysema

Multiscale Modeling Goals

- Development of a complete geometrical model of (normal) lung at different levels of resolution
 - completed
- Optimization of functional simulation for gas distribution/uptake comparing CFD, PDE for mass transport explicit and implicit – work in progress
- Modeling of disease/aging lungs, prediction of physiological function
 - work in progress

References:

Schmidt, A: Human Lung Modeling. Thesis, Giessen Medical School, 2006 Schmidt A, Zidowitz S, Kriete A, Denhard T, Krass S, Peitgen HO. A digital reference model of the human bronchial tree. Comput Med Imaging Graph. 2004 Jun;28(4):203-11. Kriete, A: Form and function of mammalian lung: analysis by scientific computing.Adv Anat Embryol Cell Biol. 1998;145:III-IX, 1-105.