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Goals and ObjectivesGoals and Objectives
1.1. determine computational priorities and challenges related to determine computational priorities and challenges related to 

multimulti--scale modeling (MSM), specifically MSM of tissue scale modeling (MSM), specifically MSM of tissue 
mechanics and biomechanics, mechanics and biomechanics, 

2.2. explore solutions for model sharing, and explore solutions for model sharing, and 
3.3. provide a forum for discussion of issues related to MSM and provide a forum for discussion of issues related to MSM and 

biomechanicsbiomechanics



Multiscale Modeling Multiscale Modeling 
in Computational in Computational 
BiomechanicsBiomechanics
Determining Computational Priorities 
and Addressing Current Challenges

Tawhai M, Bischoff J, Einstein D, Erdemir A, Guess T and Reinbolt J. 2009.
Multiscale modeling in computational biomechanics. IEEE Eng Med Biol Mag, 28:41-49.

Collaborative effort of WG membersCollaborative effort of WG members
Overview of current state in multiscale modeling in Overview of current state in multiscale modeling in 
biomechanicsbiomechanics
Members met the goals and objectives of the working group Members met the goals and objectives of the working group 
through the process of writing articlethrough the process of writing article
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BACKGROUND

Multibody dynamics

Discrete force producing elements (muscles, tendons, etc.)

Idealized joints (hinge, etc.) 

Fast, therefore convenient for movement optimizations

Simplification may affect movement predictions

No feedback from localized tissue response

Finite element analysis (FEA)

Tissue level mechanics

Whole structure/joint behavior

Assumed or measured boundary conditions

Computationally intensive, therefore not suitable for movement simulations 



MOTIVATION

Why multidomain coupling?

to incorporate the influence of localized tissue mechanics on movement control

Imagine

addressing compensatory movement strategies to accommodate tissue deficiencies
quadriceps avoidance gait in anterior excruciate ligament deficiency

establishing the link between somatosensory system and motion
proprioception
movement alterations to relieve pain

designing musculoskeletal rehabilitation programs for tissue relief
prevention and management of lower back pain



Musculoskeletal InterdependencyMusculoskeletal Interdependency

In many scenarios, the interdependency of muscle In many scenarios, the interdependency of muscle 
force and tissue response justifies a force and tissue response justifies a concurrentconcurrent multimulti--
scale/multiscale/multi--domain modeling approachdomain modeling approach

Muscle activation 
affects tissue 
loading

Tissue loading 
affects neural 
response



Musculoskeletal InterdependencyMusculoskeletal Interdependency
((multidomainmultidomain coupling)coupling)
(concurrent simulation)(concurrent simulation)

Goal:  Goal:  develop develop computationally efficient, 
mechanically biofidelic, musculoskeletal joint 
models within forward dynamics movement 
simulations

interdependency of muscle force and tissue response  
more realistic loading applied to organ and tissue level 
models
more realistic muscle activation patterns



MRI

Kansas Knee 
Simulator 
(KKS)Cadaver knees (6)

Compare 
Kinematics

Geometries

Multi-body 
knee model

Knee model 
placed in 
model of KKS

Modeling Platform



Hip Angle, 
Quad Force

Ankle Loads

Hip Position, 
Hip Load

Simulations: walking, squats, laxity tests

Optotrak 3020 
3D motion 
tracking system 

Kansas Knee Simulator, University of Kansas, Lawrence

Loading is known Bone kinematics 
directly measured



5 second Walk Cycle5 second Walk Cycle



Meniscus

Cartilage

Ligaments

Modeling 
Platform

Compare 
Kinematics

Model Parameters
Katie Weimer, Paul 
Wilson

Katherine Bloemker

Dr. Hongzeng Liu

Mohammad Kia. Meenakshi
Mishra, Dr. Ganesh Thiagarajan

Bone wrapping
Zero-load lengths
Insertion/origin

Tibio-femoral Neural Network
Gavin Paiva, Meenakshi Mishra, 
Dr. Reza Derahkhashani



Multibody MenisciMultibody Menisci
Meniscus geometry 
from MRI

Macro divides geometries 
and connects  w/ 6x6 
stiffness matrix

Stiffness matrix parameters 
optimized to minimize 
position error of an identically 
loaded FE model

Meniscus model 
placed in multibody 
knee model
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Multibody MenisciMultibody Menisci



WalkingWalking
ISO 14243ISO 14243--1, right knee1, right knee



Experimental Testing on Canine MenisciExperimental Testing on Canine Menisci



TibioTibio--femoral cartilage contactfemoral cartilage contact

δδδ &)(exp BkFc +=

800 N 800 N

FE model Multibody model

Parameters optimized such 
that displacement error 
under identical loading is 
minimized

Compliant contact model



TibioTibio--meniscomenisco--femoral contactfemoral contact
800 N 800 N

FE model Multibody model

δδδ &)(exp BkFc +=

Parameters optimized such 
that displacement error 
under identical loading is 
minimized

Compliant contact model



Multibody CartilageMultibody Cartilage

Geometry 
from MRI Macro

Divides geometries into 
discrete elements
Attaches each to the tibia
Defines a compliant 
contact w/ femur cartilage  



Multibody CartilageMultibody Cartilage

Fixed joint 
attaches each 
cartilage element 
to the tibia

Compliant contact defined 
between each element and 
femur cartilage geometry

δδδ &)(exp BkFc +=



SquatSquat
110 deg knee flexion, left knee110 deg knee flexion, left knee



Contact forces Contact forces 
during a squatduring a squat

medial tibial medial tibial 
plateauplateau
32 elements32 elements



Cartilage SurrogateCartilage Surrogate

δ

[ ] [ ]RF
Functions
Surrogate

Cartilage ⎥
⎦

⎤
⎢
⎣

⎡
=

Femur
Fc

FR

δδδ &)(exp BkFc +=

Modeling approach for a multiscale multi-organ model to predict tissue level 
mechanical  parameters



Forward dynamics 

Gait lab measurements
UMKC Human Motion Lab

Multi-body Knee Models
Neuromusculoskeletal 

Model

Musculoskeletal Musculoskeletal 
InterdependencyInterdependency

(concurrent simulation)(concurrent simulation)



Neural Network Surrogate of TibioNeural Network Surrogate of Tibio--femoral Jointfemoral Joint

Validated model of TF Joint

Motion
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https://simtk.org/xml/neuromuscular-
biomechanic.xml

Tibio-
femoral 
surrogate 

Tibia

Femur

Neural Network Surrogate of TibioNeural Network Surrogate of Tibio--femoral Jointfemoral Joint
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CHALLENGE

Coupling musculoskeletal dynamics with tissue mechanics is straight forward:

forward dynamics

finite element analysis

What if multiple forward dynamics solutions are needed, e.g. optimal controls?

Speed-up tissue mechanics calculations Adaptive Surrogate Modeling

Implement efficient optimal control approaches Direct Collocation



PROGRESS

Direct Coupling

FEA performed each time step of musculoskeletal dynamics

Muscle controls from previous optimal control solutions with simple foot model

Predicted time history of foot stresses during jumping

van den Bogert and Erdemir,ASME Summer Bioengineering Conference, 2007



PROGRESS

Adaptive Surrogate Modeling

Relies on a database of 
previous tissue mechanics simulations

Conducts FEA on a need basis

Ensures mechanically 
consistent tissue response based on 
error prediction

Halloran et al., J Biomech Eng 131 (1): 011014, 2009



PROGRESS

Adaptive Surrogate Modeling

Facilitates nested tissue mechanics simulations in optimal control iterations

Considerably decreases computational cost

Provides tissue related variables to incorporate into movement predictions

maximum height 
jumping predictions

decrease in required 
FEA of tissue

Halloran et al., J Biomech Eng 131 (1): 011014, 2009



PROGRESS

Euler 

Find

that satisfy dynamics

and constraints

and minimize

Direct Collocation

Converts optimal control & forward dynamics to full parameter optimization

Ackermann and van den Bogert,, J Biomech, in review



PROGRESS

tracking + fatigue tracking + fatigue + strain energy density

prediction of neuromuscular control, movement and foot deformations during gait

Direct Collocation also decreases computational cost of predictive movement simulations

Halloran et al.,ASME Summer Bioengineering Conference, 2009



PROGRESS

Concurrent Simulations illustrate that tissue level variables may alter movement 
predictions

Adaptive Surrogate modeling may further decrease the computational demand 
when used with Direct Collocation

Halloran et al.,ASME Summer Bioengineering Conference, 2009



FUTURE

Effective Glueing of Computational Tools

Matlab (The Mathworks, Inc., Natick, MA), for surrogate modeling, optimization
Abaqus (Simulia, Providence, RI), for finite element analysis
Python, for scripting of FEA
C/C++, musculoskeletal movement simulations, surrogate modeling

Dissemination

Simbios, NIH Center for Biomedical Computation at Stanford
project site: https://simtk.org/home/multidomain

General Use

Establish general rules for effective surrogate modeling and direct collocation

Novel Scientific and Clinical Problems

Physiologically detailed modeling of muscles
Identification of rehabilitation programs targeted for unloading of tissue

e.g. pain relief, healing
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BACKGROUND

Cell deformations are dictated by body level loads transferred to cells through complex 
joint anatomy, tissue structure and extracellular and cellular interactions



MOTIVATION

Why multiscale coupling?

to establish the relationship between mechanical variables at the joint level
and  those at microscopic levels triggering cellular processes

Imagine

identifying potentially harmful movements/loads that can cause cell damage
traumatic wounds
ulcer formation (pressure or diabetic)
osteoarthritis

establishing the mechanical link between body loads and biological cell processes
bone loss in space
tissue degradation due to immobilization
adaptation and tissue growth

designing interventions applied at musculoskeletal joints but targeting cells



CHALLENGE

Autonomous
Simulations

Post process

Simple joint models for joint movement/loads

FEA of joints (macro level) with continuum tissue models for tissue strain/stress

FEA of cell and extracellular matrix (micro level) for cell strain/stress

straight forward
cost effective
descriptive

but

macro models should be mechanically consistent 
with micro models

limited potential to explore predictive macro-micro 
level interactions (no feedback from micro levels)



CHALLENGE

Concurrent
Simulations

Given joint movement/loads nested simulations of

anatomically detailed joint models and 

microscopic models of cell and extracellular matrix

provide cell deformations

response of macro level is a direct 
function of microscopic models

full functionality to explore bidirectional 
dependencies between spatial levels

but
high computational cost

&
need for reliable micro level models



CHALLENGE

Potential Pathways for Accurate & Cost Effective

Autonomous Simulations

Continuum models of tissue representative of underlying microstructure

A-priori simulations with microstructural models for surrogate modeling

Concurrent Simulations

Computational homogenization

Adaptive surrogate modeling

Parallel processing



PROGRESS

influence of cell distribution on the 
mechanics of representative 

volume element

nonlinear distribution of cell 
level stresses under uniform 
loading of representative 
volume element

Bennetts et al.,ASB Annual Meeting, 2009



PROGRESS

joint level modeling

MRI geometric
reconstruction

mesh
generation FEA



FUTURE

Accessible Computational Tools

SciPy (http://www.scipy.org), for scientific computing with Python
FEBio (by Jeff Weiss, University of Utah), for finite element analysis
C/C++, for high performance computations

Research

Computational approaches
Experimentation at all levels, for model development and validation
Diseased conditions

Dissemination

Simbios, NIH Center for Biomedical Computation at Stanford
Data dissemination utilizing Hierarchical Data Format (http:/www.hdfgroup.org)



Multi-scale mechanics:
Airway hyper-responsiveness, from molecule to organ

NIH 1R33HL087789-01A1

Principal Investigators
MJ Sanderson (lead PI), University of Massachusetts

JHT Bates, University of Vermont
AM Lauzon, McGill University, Montreal, Canada

J Sneyd, University of Auckland, Auckland, New Zealand
MH Tawhai, University of Auckland, Auckland, New Zealand

Special acknowledgement to
GM Donovan & AZ Politi, University of Auckland



Asthma & AHR

• Asthma is caused by airway constriction, characterised by twin 
emergent phenomena: airway hyper-responsiveness (AHR) and 
airway hyper-sensitivity (AHS)

AHR – airways contract too severely
AHS – airways contract too readily

• AHR is the primary factor in asthmatic mortality and morbidity.
• The causes of asthmatic AHR are not well understood.

Airway wall thickening
Smooth muscle functional or structural changes
Structural vs dynamic instabilities

• Multi-scale model is a tool to test hypotheses, to embody 
experimental understanding, to predict emergent behaviour.



Multi-scale model for AHR

…

• Four important spatial scales:
Organ: breathing and 
gravitational mechanics
Tissue: airway wall mechanics
Cell: smooth muscle dynamics
Molecule: calcium dynamics



Organ scale
Soft tissue mechanics for lung motion

• Parenchymal continuum: 3D, compressible, hyperelastic
• Finite deformation elasticity: W = C/2 exp (aJ1

2 + bJ2)
• Patient-specific geometry
• Breathing & gravity deformations solved via finite element 

method
• Lung free to slide in a cavity, with frictionless contact constraints
• Embedded & tethered conducting airway tree

1G, prone

1G, supine

Tawhai et al. Acad Radiol 13(1):113-120, 2006; Tawhai et al. submitted to J Appl Physiol, 2009



Organ scale 
Soft tissue mechanics for lung motion
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Tissue scale

• Embedded airway segments radially-symmetric and longitudinally-stiff
• Airway radius determined from force balance across all layers

Internal pressure
Smooth muscle contractile force (cellular level)
Parenchymal tethering pressure
External pressure (organ level)

Donovan et al., ATS 2009; Politi et al., submitted to Royal Soc Interface, 2009.



Parenchymal tethering

• Airway contraction results in a restoring force from the compressible 
parenchymal layer.

• Estimate local tethering pressure by linearising material state from the 
organ level model.

• Plane strain, radial symmetry
• Result is similar to widely-used quadratic heuristic, but coefficients 

depend on organ-level material state
P2 = 2μ[ΔR2 + 1.5(ΔR2)2] + P3

Donovan et al., ATS 2009; Politi et al., submitted to Royal Soc Interface, 2009.



Cellular scale

• Thin filament theory: actin and myosin
• Smooth muscle force generation and dynamics controlled by 

crossbridge model (Huxley, Hai-Murphy, Wang et al.)
• Crossbridge population states governed by a system of PDEs

Donovan et al., ATS 2009; Politi et al., submitted to Royal Soc Interface, 2009.



Molecular scale

• Cellular scale smooth muscle activation is controlled by agonist and 
calcium concentrations.

• Agonist (ie MCh) is introduced to the system at a specified time
• Mimic a bronchial challenge

• Agonist → calcium → smooth muscle contraction → airway constriction

Donovan et al., ATS 2009; Politi et al., submitted to Royal Soc Interface, 2009.



Multi-scale connections

• Each scale interacts with its immediate spatial neighbours.

Donovan et al., ATS 2009; Politi et al., submitted to Royal Soc Interface, 2009.



Simulated bronchial challenge

• 3 second tidal breathing
• Agonist introduced at 10 s
• Emerging spatial variation

Donovan et al., ATS 2009; Politi et al., submitted to Royal Soc Interface, 2009.



Simulated bronchial challenge 

Donovan et al., ATS 2009; Politi et al., submitted to Royal Soc Interface, 2009.



Summary

• Initial multi-scale model through organ, tissue, cellular, & 
molecular scales

• Emerging behaviour
• Model development is paralleled by experimentation in 

collaborating groups, also multi-scale
Molecular & cellular: Lauzon
Tissue: Sanderson
Organ: Bates

• Current work is studying regional constriction & integrating 
with models for air flow
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