Modularity is the lynchpin for collaborative large-scale modeling

Authors:

James B. BassingthwaIghte jbb2@uw.edu 206-685-2012

........... Daniel A. Beard dbeard@mcw.edu
……… C. Anthony Hunt a.hunt@ucsf.edu
 Maxwell L. Neal mneal@u.washington.edu
……….James Patrick Sluka jsluka@indiana.edu
……….Gary M Raymond
 garyr@uw,edu

……… Lucian Smith lpsmith@uw.edu

……… Herbert M. Sauro hsauro@u.washington.edu

 + a few others

Abstract:

 Modular construction is the natural form of biological systems at all levels and is the efficient mode of construction of models of biology. Interdisciplinary collaboration is flourishing and is advancing the rate of progress in the quantification of biology. Models developed in different laboratories on different platforms can be brought together if they adhere to common standards and ontologies. The strategies used for multi-scale model building serve also for substituting modular elements of differing complexity and robustness for one another in order to meet varied demands, e.g. for computational speed, simplicity of operation, robustness, precision, or mechanistic denouement. A particular goal is the automated construction of models from component modules archived in standardized form. We propose herein some recommendations for defining the characteristics of modular components and suggest some of the requirements for automating the construction of higher-level models, and for automating the substitution of modules for one another during active computation and on-line optimization to characterize physiological systems under observation. The goal of real-time computation (via model reduction) for analysis and real-time decision-making compromise the robustness of the system description unless adaptability of the multiscale model is built in through continuous control of model configuration. Strategies to achieve these ends are suggested, and evidence of progress is provided for some steps, including automated model construction.

Key Words: modular modeling, ontologies, multi-scale, model standards, databases, SBML, CellML, JSim, computational methods, spatial and temporal continua, stochastic calculation.
Revision History: J. Bassingthwaighte 9aug10 ... to start

Addition by D. Beard 18aug

Revision and addition by JB on 13oct10

Reorganized and additions by Lucian Smith and Max Neal, September

Input from James Sluka and Anthony Hunt early oct

Incorporation of varied inputs by JBB 8-13oct

Further editing and additions by Sauro and Bassingthwaighte 14-21 oct: modular modeling, module insertion/substitution, SBML nuances; further local UW changes made for the 21oct version.

Neal revisions incorp 23oct.a

Smith: Antimony, SEDML revised, grammar checking 23oct b.

Tony Hunt 23oct.c.

PREAMBLE

 This draft needs further editing throughout. Please use tracking ON Not only does it need still are thorough-going cleanup but it needs much deeper incorporation of the ideas related to coming from the biological side of things to use the kind of modularity examples provided by nature.

 The intent is to begin to define a strategy for modular, automated construction of multicomponent, multiscale models, and to create an understanding of how modularity can be used in reconstructing models of reduced form during run time, as well, of course, in constructing models out of archived components. As such, this document is intended to identify practical issues, and it should therefore provide a technical appraisal of the current status and future perspective rather than covering sociological and philosophical issues.

INTRODUCTION:

Biological modeling consists of identifying key components of the system being studied, and abstracting those elements to physical and mathematical relationships between them. Biomedical Science can be characterized as the pursuit of 1) deeper, more useful mechanistic insight into biological phenomena and/or 2) mechanistic models that better explain biological phenomena. Simulation is a mechanism of expanding one’s viewpoint and testing idea, providing prediction or recapitulation of experimental observations,, discoverng plausible mechanisms or generators of phenomena, it requires defining the mathematical relationships among components, and is a vehicle for understanding the dynamics of the system. Fully developed models are not always needed, and are not even formulatable until one has enough data for a solid hypothesis.

One starts with defining components and drawing diagrams of possible interrelationships. These are primitive forms of a model. Even purely physical relationships are useful from a structural point of view, as for example the consensus model of yeast metabolism (http://www.nature.com/nbt/journal/v26/n10/abs/nbt1492.html). But for our current purposes, the development, utilization, and dissemination of practical, biologically sensible models of living systems demands weaving information from experiments and ideas about system components into a computable model whose behavior can be assessed against observations from real life. To build such models it is natural to start with one’s knowledge of it components, which we can label “modules”, and to hypothesize, plausible, challengeable, generator-to-phenomena mappings of their relationships in clear terms,. The model is then the working hypothesis of how the system works.

A module can be considered as a distinct component of a system. Distinct implies that though it is necessarily linked to other components in the system, the module has identifiable structure and behavior differing from the system overall and from other modules. An individual module may be replicated many times in a large model, and through archiving is made available for re-use. A module can usually be cast as a complete model in its own right; it has inputs from its local environment within a parent model, and outputs that contribute to the parent model function.

[image: image4.wmf]

In our context a "module" in a model is computer code for performing a function or providing an input/output operation. Modules developed by labs around the world could be reused by investigators formulating new higher level integrated models. But the modules have to be accurate and understandable enough to meet the requirements of the new use cases.. While a module may be internally complicated, its number (i.e. its degree or order)
 of "connections" to the region external from it is always limited. Modules with the fewest connectors are generally the easiest to define, to connect and to maintain.

Figure 1 Modular construction of a multiscale model designed for hierarchical relationships and successive stages of reduction in model complexity.
Modularity is a feature of a system that is composed of modules or groups of related elements. Modules can be physical, conceptual, or both. Physical compartments in a biological system can be modeled as distinct systems, with the model of the set of elements of each compartment becoming a ‘module’, and groups of biological entities that have many interactions with each other and few interactions with other elements, whether or not they all come from the same physical compartment, can also be separated into modules.

Model Classes:

 A simplified way of categorizing models gives context for the discussion of the position and utility of modules. Models can be listed as falling into classes defined by:

1. Scale: Single modules or elements versus multi-scale modules

2. Description level: Detailed mechanistic versus behaviorly descriptive.

3. Connectivity form: Input/output variables (“black-box”) versus total parameterization open (“white-box”).

4. Multi-element form: Simple aggregation without model reduction versus successive levels of reduction

These four categories give 16 distinguishable model types. The single scale module, such as an ion channel can be defined mechanistically at the computational chemistry level as Silva and Rudy (2009) described or at a kinetically descriptive level as did Hodgkin and Huxley. Operationally in a multi-scale situation, its time- and voltage-dependent kinetics can be defined at either the computational atomic level of conformational changes or by choosing a single aspect of its behavior, the transmembrane conductance of the channel; the former might be needed to ascertain the affinity to a drug, but only the latter to provide the ionic current through it. The connectivity to the whole of the biological environment must be defined for the computational chemistry level in huge detail (white-box), including the molecular structure of the channel, the lipid bilayer and the water, while the channel conductance can be driven solely by the transmembrane voltage and time (black-box). Multi-element formulation can be achieved by composing a cell level model of multiple channel models that are totally independent of each other except insofar as their current drive the membrane potential; or alternatively it may be more useful to define the behavior of the sum of all the potassium currents (as in the original Hodgkin-Huxley model) of the calcium currents (as in the Beeler-Reuter model), remembering that both of these models were formulated before the details were known.

Modularity is the lynchpin for integrative modeling
The lynchpin (or linchpin) is the pin inserted through the axle of the cart to prevent the wheel slipping off the axle; because it holds the whole contraption together, and is therefore key to its operation. Without it, the wheel falls off and the cart collapses. The cart is inherently modular, and cannot be constructed without affirming the nature of its modularity. The arguments for modules being central to multi-scale modeling are similar to those for making carts from parts or integrated circuits from components. No one module is the lynchpin itself: modularity is at the heart of systems modeling and model maintenance.

Generally speaking, anything beyond a one-compartmental model can be regarded as being composed of modules. These might be each of a series of enzymatic reactions in a biochemical network, particular functions of intracellular organelles, sequences of steps in a feedback system, or a whole organ. This raises the question of whether or not the modular nature can be formalized to the extent useful for broad usage in constructing multi-scale systems.
Defining the purposes for modules:

A module may exist in several variant forms. A “master” form might be the most carefully detailed mechanistically correct representation of the biology. This usually the most “robust” form, having the mathematically and biologically most correct behavior over the broadest range of circumstances. Reduced forms, faster to compute, or simpler to use, or adequate for more limited circumstances might serve equivalent functions. Reduced forms may be of validity limited to a fraction of parameter space.
Such a set of alternative modules allows great flexibility in designing a model for a particular operation. The choice amongst them might be at the model builder’s discretion, or might be automated
. Master modules, being more accurate and, hence, more detailed, will often have more connections (be of a higher "degree") to the various other modules constituting their surrounding environment. Decreasing the degree or order of a module, as in replacing a master module with a reduced form, will require something like a "terminator" or a "simulation harness" to cap the connections of the other modules to which the master module was connected and to which the new, reduced, module does not connect.
In introducing reduced-form modules one risks losing fundamental characteristics of the high level model, most characterisitically the loss of systematic, collective or “emergent” behaviors associated with the integrated non-linear system and not attributable to the individual modules of which it is composed.

Public archiving and free availability enable investigators to build upon the scientific hypothsesis formalized in a module. Databases are essential for the furthering of of collaborative research and of further independent research starting in new areas. While appreciating that all models are wrong (meaning incomplete or inexact or truly erroneous), each must be thoroughly documented, verified for numerical accuracy, and validated for a variety of experimental or theroetical situations. Only then does it document a successful scientific effort that can be built upon, or used as an element in a multicomponent model.

Some relatively standardized modules can be considered as analogous to standard mathematical routines like sin(x) or log(Y). They may be written in re-entrant code to allow multiple uses in different parts of an integrated model. Examples would be the compliance of an artery or vein as a monotonic function in the intravascular pressure, or the neural spike train rate of the baroreceptor as a function of steady-state aortic pressure. In such simple situations this allows defining the interfaces to modules a priori. (This is not necessary with semantically interoperable modules.)
Collaborative construction of large systems models requires modularity. Different modules can be developed by different people, living in different places. The unique expertise of particular groups can be captured and transferred through the production of modules built with their particular knowledge. The products of the various groups’ efforts can be shared, collated and integrated to advance the science more rapidly.
Model evaluation benefits from widespread testing. Code verification and evaluation for validity can be done by groups outside of the original design group. Collaboration is facilitated not just by the common usage of modules but by the acts of critiquing, testing, validating, and application of the model in different ways.

Teaching and training: The representation of modules, and the clarification of the behavior of each, facilitates the understanding of the whole system. Understanding the modules also fosters the identification of emergent behavior associated with the integrated system and not attributable to the individual modules of which it is composed.
Defining the internal structure of reproducible and sharable modules:

The context for modular construction of large models in biology is describable by three levels:

The domain: This might relate to the anatomy, e.g. the cell as a mixing tank and the extracellular fluid as another mixing chamber. An enzyme is restricted to a location in one chamber, but solutes pass from chamber to chamber. The "domain" of a module might be the membrane, thereby requiring it to have links to one or both external domains (e.g. as for a channel), or in a defined solution within a region (e.g. intramitochondrial or inside the nucleus or in the plasma). For a 1-dimensional circulatory network model the spatial domain is position along the vessel length and the variables are functions of time. Descriptive operators driven by pressure would provide outputs of fluid dlow and pressures
The species or variable being operated upon: In a biochemical setting the species are the reactant solutes and the enzymes which facilitate reactions. An enzyme "operates" on a substrate to produce a product, or vice versa, and while the enzyme may take a variety of forms in the process, from the external system point of view it may be only necessary to identify three measures: the rate of substrate usage, the rate of product formation, and the amount of solute (substrate or product) bound to the enzyme. The three information items allow the calculation of mass conservation, used to verify the model computation as mathematically reasonable. In a fluid flow model conservation can be expressed in terms of volumes of fluid, momentum, and energy.
The operator: The enzymatically facilitated reaction transforms A to B or A+B to C+D or other reaction type. How it does that is internal to the operator, thus allowing a separation of computer code for a module into 2 types: internal and external. The internal code comprises the body, or innards, of the module. The external code provides the links to the overall multimodular domain. . Biological modules of a biophysical type are usually highly “coherent” [Stevens, 1974] with an identifiable singular purpose describable by a relatively simple operator. Biochemical modules are less well defined, tend to have higher order of complexity and more connections, and are less strongly coherent, meaning they end to be more difficult to define in an operational sense and that reduced form modules have poorer likelihoods of providing precise responses. Since all reduced forms are recognized as approximations (and therefore less precise than Ortoleva’s deductively produced model form (ref Ortoleva, Taufer white paper), high versus low coherence roughly parallels high versus low precision.
None of this should circumscribe our view of a module: it might be of any degree of complexity, and contain a multiplicity of operators, but each will require it key set of inputs or drivers. A module might well contain nested or hierarchical modules within it, as for example in a modules for cellular excitation-contraction-coupling within a contractile muscle model of many such units. For such complex modules, there will rarely be an analytically exact reducted equivalent form, i.e. the reduced form will be an approximation, albeit with as high coherence as the designer can achieve.
For channels, pumps, transporters, exchangers and other mechanisms for permeating membranes, the external code needs only the rates of exchange for each of the substrates or products in order to calculate the concentrations of each of the species. This is convenient, for there may be many simultaneous influences on the concentration of a solute, and all need to be accounted for in the domain common to those various operators. Thus in the external code the modular code provides what is need for the domain calculation.

The internal code defines the operation. It uses the external conditions defined within the domain, the parameter values for the operator and a set of initial conditions for the internal variables. (The default initial conditions could be simply the steady state conditions for the operator under the external conditions, or could be as if the external concentrations had been zero. This arbitrariness is a potential source of error.)

The role of the module's internal code is to determine the physical-chemical response or provide a precalculated descriptive response to the inputs and to return the output information to the external domain. The external domain can then takes the information, along with that from other modules and integrates it appropriately.

Modeling Frameworks

The sixteen classes of models or modules listed above can be used in a variety of ways to build up new models. From a modularity point of view, higher level models can aggregated at a single level, or used as elements in hierarchically structured systems, for example, taking gene-regulatory or biochemical modules together with channel models and models for myofilament contraction into a cellular model for excitation contraction coupling, and using a set of those cells in a tissue mechanical model for force generation. The cell level model might be in completely detailed form or reduced descriptive form. The input-output relationships might be in black-box form to minimize information flow or open, along with the whole of every module, a “white-box” form..

Aggregated vs. hierarchical models: Modules that describe distinct components of a system can simply be aggregated to produce a single model of a larger system; the aggregate then describes both the components and the system. This makes for a detailed comprehensive model that retains all its detailed structure. Consequently it is as robust as the components were originally designed to be, but may still lack control elements based on interactions between components. Significantly, it is computationally demanding since nothing is simplified. Yet an aggregated model has an advantage over a large ‘flat’ model of the exact same system by virtue of its organization: the resulting model is easier to understand, easier to revise and update as new information about one of the subsystems emerges, but still able to simulate or analyze as a whole.

Hierarchical modeling is a more complicated form of aggregate modeling where modules are nested within each other in more than one hierarchical level of control or construction. Multiscalar models can also be formulated as modules, for example, a lung or a heart or a kidney in a multiorgan system for the exchange of oxygen and carbon dioxide and the regulation of pH. Each organ can be treated as an operator with specified inlet and outlet blood gasses and pH. The internal structure of the module is specific to the organ and does not have to be identifiable to the other organs, so the “operator” which transforms the gas concentrations between inlet and outlet performs in accord with the combination of the input vectors and the “hidden” internal behavior couched in the model code.

Another example at the level of regulation of gene transcription would be a two level system: a higher level transcription factor is a regulator of the level of a different transcription factor regulating the production of an enzyme. The input to the two-level model can be simply the concentrations of transcription factors and inducers for the higher level operator-promoter-coding sequence of the gene for the second transcription factor. The initial and continuing conditions then, in the “hidden” part of the module, define the rate of production of the lower level transcription factor, and thereby govern the rate of production of the mRNA for the enzyme protein. Because such modules are implicitly multilevel, the inputs might also include the concentrations of inducers or transcription factors at all of the levels at which they change during the duration of the experiment.

Black-Box vs. White-Box Models: When combining aggregate or hierarchical models, a modeler can choose to treat submodels as black boxes or as white boxes, depending on whether the existing form of those models suit the modeler’s purposes.

If the modeler chooses a black-box approach, the modules are viewed simply as methods that effect a transformation of the input function to produce an output. These may be mechanistic, based on the best representation of the biological process or may be purely descriptive, based on empirical relationships observed experimentally. In the modeling of large systems there will almost always be some of these, where the module represents an unexplained relationship or an approximate linkage between better known parts of the system. The most primitive example would be a 1-dimensional function generator wherein a value for y = f(x) is obtained by providing X, yielding instantaneously a value for Y from a predefined analytic expression or an interpolation of data where there is a single valued relationship.
In this black-box modularity, the module is defined in terms of an ‘interface’—particular elements that are designed to be connected to external models. An interface may take several forms depending on the type of modeling involved: physical entities such as concentrations or amounts, processes such as flows or enzymatic reactions, or even mathematical concepts such as equilibrium constants. Strict black-box modularity even defines whether the interface elements must be initialized and described in the containing model, or whether it does so itself, and the containing model may only use the results of that description. The rest of the module is entirely hidden from the containing model. This mimics what has been done in electrical engineering, where physical separation of components is easily achieved, and is best applicable to biological systems where the modularity is physical, not just conceptual. Where well-established protocols exist defining interfaces for particular subsystems, or when all modules come from a single lab then defining the interface is straightforward, but standards for these would have to be developed for community usage.

Black-box modules can be used to simplify both the construction and the surveying of the model code. This is done by choosing to hide the operational equations and the internal parameters of the module while providing it with inputs and controls and observing the outputs. For example, take the Hodgkin-Huxley action potential model. The action potential is the event dominating our view of nerve ionic currents, and we tend ignore the roles of the pumps and exchangers that are required for homeostasis. When we model the action potential, none of the parameters for the time- and voltage-dependent conductances need be seen externally. In this scenario, the instantaneous values of the concentrations of Na and K inside and outside the cell and the Em are the inputs to the model. The conductance parameters are untouched and can remain hidden. The outputs are the ionic currents, providing the ionic fluxes and the charge transferred. The Na and K currents are summed with any other currents (e.g. calcium current and the currents due to the ionic pumps like the NaKATPase) to obtain the total net charge transfer. One calculates from the current the change in transmembrane voltage, Em, and from the ionic fluxes, the changes in the concentrations of Na and K on either side of the membrane.
The continuous-system-type operator portrayed here is not the only one. Stochastic operators and event-oriented models based on decision trees are equally legitimate, and are an important part of object-oriented coding. For system with uncertainties, and are to be found in neural spike train modeling and gene regulatory networks. (Tony Hunt, please revise.)
However, particularly when the modeler is re-using modules originally created for some other purpose, sometimes the defined interface of the module is ill-suited to the new task. In this case, a ‘white-box’ approach is called for, where any element of the submodel may be modified or connected to elements of the containing model. For example, if one wanted to modify an existing ion pump model to account for the presence of a protein that modulated the conductances by binding to a pump, the ‘internal’ workings of the pumps and exchangers suddenly need to be exposed. Similarly, if one is aggregating two models that overlap each other by each modeling a particular set of enzymatic reactions, one must have access to the internals of the models in order to delete the redundant set.

White-box modeling is also required for semantic-based model aggregation, where all model elements from multiple modules are inspected to determine which elements are semantically the same before being combined. If the models were treated as black boxes, duplicate elements could be missed, resulting in incorrect combined models.

The simplest way to accomplish white-box modeling is by direct editing of the original model. Once it has been edited to have a new interface to fit its new role, it can then subsequently be treated like a black box. A subset of modeling systems allows white-box modeling directly, automatically moving elements into the interface if needed in a new context. A robust modeling environment will allow both black-box and white-box modeling, depending on the user’s needs.
Modular Structuring of Multi-component Multi-scale Models

Larger models may be composed of sets of individual modules or of an agglomerate of aggregated, black-box and hierarchical models. Virtually all large models will be multi-scalar, i.e. be comprised of two or more hierarchical levels. Fortunately for us biologists, the hierarchy is understandable in biological terms: molecule (protein or small solute), network, cell, tissue, organ and organ system.

Computational speed is particularly important for large models. Speed is gained by simplification, either of the model representation or the methods of solution. Simplification by reduction in numerical accuracy, using faster solvers, longer time steps, larger space steps, are readily testable at run time. Simplification by algorithmic reduction and approximation is a wholly different game, one ordinarily requiring a combination of skills, understanding the biology and fathoming ways to find fast algorithms giving the required “correctly analogous behavior”. Since precise fitting of the parent full algorithm by the reduced-form algorithm is certain to fail beyond some limited region of state space, this invites one to construct a set of reduced-form models, each suited to a different part of the state space for which the full algorithm is good. From such a set of alternative reduced-form analog modules, the best suited one can be chosen for the calculation, hopefully automatically during a simulation run.

At the prokaryote level one can consider a ‘hierarchical composition’, where modules are aggregated together, and those elements that represent the same entity or concept in those models are synchronized with each other. During the synchronization process, any element in any module is available to the modeler to match with other elements or to modify directly. When multiple modules contradict one another about an aspect of a synchronized element (as for example its initial condition, or how it changes in time), the model composer decides on a case-by-case basis which definition to follow. Hierarchical composition is particularly appropriate for models with highly porous or nonexistent physical separation of elements, and when the modeling community in a particular domain has not settled on a particular set of interfaces for commonly-modeled systems.

The advantage of hierarchical modeling is that the model itself may be used in new ways that were unanticipated by the original modeler. In the above example, if a second group wished to model [the fluctuation of a protein that regulated the activity of a particular ion pump]
, that group would need access to the parameters associated with that pump, so that it could be modified. However, their job would be greatly simplified by the presence of the older model: there would be no need to re-model the entire system, merely to add and augment the old tested and validated model.

Automated or semi-automated hierarchical modeling is possible if the models are well annotated with identities from common ontologies. In this scenario, multiple models are being combined to form a single larger model. Those elements that are common across models must be identified and synchronized; a task made much more straightforward if those elements are annotated the same way in both. When the aggregator finds two elements from different models that are annotated the same (such as ‘Sodium ion concentration inside the cell’), they are combined into a single entity in the containing model.

As illustrated by this example, capturing the biological meaning of model contents helps automate the modular composition of biological models. The Semantic Simulation (SemSim) modeling framework [PMID: 19209710, PMID: 20601121] is another approach to modular modeling designed to leverage the power of semantic annotations. The goal of the SemSim project is to provide a multi-scale, multi-domain modeling framework that allows modelers to compose and decompose models at a higher, more abstract biological level of organization rather than at the code level.

SemSim models capture both the computational contents of a model and the explicit biological meaning of model variables. Traditionally, these model semantics are absent from model code, implicit, or only documented using in-line comments. To make a model’s semantics more machine-readable, SemSim provides a framework for capturing the explicit biophysical meaning of model contents within an ontological format so that users can perform extraction and modular integration tasks at the biological, or semantic, level. Working at this level of interoperability provides many opportunities for automating modular modeling tasks, and helps eliminate the cost and errors associated with manual coding.

As with hierarchical modeling, the SemSim approach to modular modeling does not require component interfaces to be specified ahead of time. Instead, the semantic annotations of merged models allow a computer to recognize the biologically valid interfaces between SemSim models at the time of coupling. This feature not only helps automate model merging, but ensures that the resulting integrated model is biologically consistent.

Advantages of Modularity

Whatever modularity framework is chosen, benefits are seen in the areas of comprehensibility, ease of maintenance, exchangeability, and modification.

Small models can be understood in and of themselves, but as models grow larger and contain more and more ‘moving parts’, they become too complex to grasp all at once. Modularity can impose an organization on the whole that facilitates understanding. Even the simple act of defining interfaces for a model can help the recipient of a model understand how it was intended to be used, and what it accomplishes.

 Large flat non-modular models are difficult to maintain. If they are useful they are continuously being updated as information is gathered and as purposes diverge. Einstein's admonition that "models should be as simple as possible but not too simple" makes sense if the goal is to capture the essence of the idea, but when referring to comprehensive systems models, defined as describing evolving situations where the models grow to absorb the latest discoveries, ‘as simple as possible’ becomes still rather complicated. Biophysical modules can be individually simple to define and the model easier to maintain, since most of the modules remain relatively unchanging as the science advances. With automated construction, a complex model composed of many modules could be automatically updated when any module is improved. When the degree or order of a new module version is equal to that of the old, having the same inputs and outputs, regardless of any intramodular reconstruction or internal equation changes, the substitution of the new for the old is technically simple. That is because the structure of the graph and thus the composite model has not changed. However, it is important to note that the behavior of the replacement module may differ from the original, which requires reverification and revalidation of the composite model.

However, it is often the case that a more accurate ("master") form of a module will have more "connections" to other modules (at all of sibling, inner, and outer layers) because higher accuracy means taking into account more detail, more facts, data, attributes, perspectives, &/or knowledge. Although we tend to think of the biology as discrete and composed of somewhat independent biological components, it rarely is completely discrete. Sometimes it can act discrete under one condition, but not another.

Thus where 2 modules capture the same function, except that one has more "connections" to other surrounding phenomena than the other, one must decide whether those "connections" are shunted, harnessed with a simplified simulator of the signals that would have been there (as in matching impedances), or simply left unused, as can be done with a disconnected signal in the form of a concentration.
The connections for a new version of a module usually do not change even though the intramodular construction and internal equations change; then the substitution of the new for the old is simple, as nothing is changed in the composite model.

Most model code never leaves its programmer's institution. It is difficult to document and explain computer code. The time-consuming effort to create manuals and tutorials is unrewarded and unfunded under our current granting system. The first level of success in modeling is a model useful in research, and therefore publishable. To take a substantial model, e.g. Noble's model of the human cardiac action potential (ten Tusscher 2004) from the stage where it is verified to be mathematically correct and validated scientifically as an analog of the real-life phenomena, to a distributable, understandable, proven reproducible model that others can build upon is a big task. The labor is 10 to 20 times that of producing the original model. Most journals do not yet require that the model be available to the reviewers of the article, or that it be archived and available to the public. But the funding agencies now are clear in asking that the results of scientific work be shared. This means that adherence to minimal standards will soon be required. The more modular the archived model is, the easier it will be to reuse and modify it in other research labs.

As a researcher constructs models using discrete modules, those modules become more accessible and manageable targets for maintenance and modification. It becomes easier to update a model when new research results appear. It also becomes easier to exchange more detailed and accurate but computationally intensive modules with more approximate and computationally efficient ones. And when it is unclear exactly how part of the system should be modeled, creating alternatives that can be swapped in and out can allow a researcher to test which module best fits the observations, while ensuring that the rest of the model remains the same.

Module Substitution: Any given module may have multiple forms, with varied levels of approximation, having variants to fit different species or different cell types, or having different types of enzymatic reaction in Michaelis-Menten form, etc.
 The set of modules intended to fulfill a given function constitute an equivalence class for that function and will satisfy various technical and functional requirements. Each variant will, likely, behave slightly differently due to that modules mechanism and connections. A primary technical reason for developing a set of modules for a given function is to lower computational expense to gain speed or use commodity hardware. Another technical reason might be that one variant is only valid over a limited range of model state space, with alternative variants needed for other ranges. This sets up a situation where module substitution might be automated during computational runs, not just in model construction, for efficiency purposes. A primary functional reason is to allow the modeler to explore the systemic effects of one variant in place of the other. Such substitution can help verify, validate, and curate modules as well as assist in the "inverse problem" of discovering and refining mechanisms with prior knowledge of the phenomena to be generated. And this sets up a situation where module substitution might be automated for exploratory modeling purposes. [cite Steven Bankes?] This type of on-the-fly model substitution is called 'adaptive simulation'."
In multi-scale modeling, as one enlarges the scale of integration of a system, the system may develop complex dynamics, even overt chaos, while at the same time may become more stable, in the sense of becoming more robust, more resistant to perturbation by external inputs or internal failures, while cycling on an attractor. This stabilization on the attractor may allow further simplification of individual modules and allow further reduction in module complexity.

Dissemination and Reuse of Modules: Exchange Formats
Given the stated goal of integrating validated models together to achieve increasingly realistic representations of biological function, the distribution and reuse of component modules is of more practical value than the dissemination of published models. This is because integration of models naturally occurs at the lower "modular" level, rather than at the high level of the integrated models. As a concrete example, consider two biochemical systems models each simulating the kinetics of a set of enzymes catalyzing an integrated network of chemical reactions. These two models may overlap in terms of the reactions that they treat and therefore likely invoked different versions of individual reaction modules. Furthermore, reactant concentrations treated as state variables in one model may be represented by fixed parameters in the other. Therefore a unique integration of two models is not likely to exist.

When models representing the kinetic mechanism of the individual enzyme-catalyzed reactions in each module are available, however, these reaction modules may be combined in arbitrary ways. The Biochemical Simulation Environment (BISEN) package [Bioinformatics 2009 25:836-837] facilitates this sort of modular biochemical systems model building. Using this package, constructing a model from existing enzyme/reaction modules is the computational equivalent of choosing a set of enzymes from laboratory shelf, reconstituting them in a defined environment, and adding substrates at concentrations defining an initial condition.

BISEN is able to apply modular model design and reuse effectively, in part, due to its relatively narrow application domain. It is built on a strictly defined set of rules for defining modules and constructing integrated models. (See [Bioinformatics 2009 25:836-837] and user manual available at http://bbc.mcw.edu/BISEN.) Similarly well-defined and community standards for module definition, description, and exchange will be required to achieve practical modular construction and reuse for a broader class of multi-scale models of biological systems.

By far the most common method of composing models in biological research is raw, procedural computer code, often written in Matlab or C/C++. This has the advantage of complete customizability, but is hard to modularize and exchange, because ad hoc formats, by definition, do not adhere to any standards.

A somewhat better alternative is to encode the model in the standard format of declarative modeling languages. Three examples of such languages are CellML, JSim, and SBML.

As modules and models mature, they should be described using DEVS (Discrete Event System Specification) (http://en.wikipedia.org/wiki/DEVS). It is a modular and hierarchical formalism for modeling and analyzing general, modular systems that can be represented as discrete event systems and/or can be described by differential equations, and hybrid continuous state and discrete event systems.

CellML, developed in at the University of Auckland (http://cellml.org), is primarily an archival XML form of a model definition. It is a highly-modular language for storing model structure, mathematics, and metadata (information about what mathematical symbol represents what biological entity or concept. While it defines algebraic and differential algebraic and ordinary differential equations, it does not define the computational platform or the numerical methods or provide data for model validation. A model repository at http://models.cellml.org contains over 450 models in various states of curation. In general, as is typical of black box models, few if any of the submodels defined in this database have been reused in other models or by other researchers. This may change, as a set of modules specifically designed for synthetic biology have been developed by Michael Cooling at the Auckland Bioengineering Institute. In this model of the ‘Bugbuster’ circuit from an iGEM team, in Figure 2, the genetic circuit and protein network is built up modularly from more basic parts representing elements such as generic proteins and promoters. The method of deriving equations from the diagram is not so clear: each one has to be individually defined. These elements do not seem to fit the definition of a module in the sense of the module defining an operator. Rather these elements are the objects (proteins, substrates) which are being operated upon, and the processes are the numbers in the figure. Nevertheless, these basic elements may prove useful to other synthetic biology modelers, as the interfaces used in that field are somewhat standardized, despite not being confined to physical compartments [Note: Sauro et al are developing a more comprehensive set of standards for Synthetic Biology Open Language, or SBOL]. While compartments can be identified in CellML the identification of the modules within the code tends to be lost when the CellML is translated into a computational language.

[image: image1.png]Bugbuster Systems Model

Model Overview
This is 2 Systems Model for the gold medal-winning machine ‘Bugbuster’ produced by the team from Newcastle University for
the IGEM 2008 competition. Details about the project can be found here: http://2008.igem.org/Team: Newcastle_University.

A constitutive promoter leads to the production of proteins spak and spaR. Subilin activates spaK which in turn activates
SpaR. Activated spaR s a transcriptional regulator for GFP. The system senses and reports subtilin concentrations via GFP.

Figure 2. Bugbuster systems model for a systems biology approach
JSim, (http://nsr.bioeng.washington.edu/jsim/), developed at the University of Washington, is a simulation interface system designed for model development and for the optimized or manual fitting of model solutions to experimental data. The JSim project files contain data sets, store multiple sets of parameter sets and optimizer and display settings, and also allow a wide choice of numerical solvers for PDEs and ODEs and eight optimizers for the data analysis, including sensitivity analysis and behavioral analysis. Project files may contain several models, allowing direct comparisons against experimental data sets. JSim’s mathematical modeling language, MML, is a human-readable model language that describes the mathematics of a biological system, and lends itself to modular model development. A database of over 300 JSim models [95% curated and documented] can be found at http://nsr.bioeng.washington.edu/Models/modelDB/. Storage is in XML [Note: Is the specification for this available?]. MML code provides the domain and parameter definitions, values, and units, the variable definitions, initial conditions and boundary conditions, and the partial and ordinary and differential-algebraic equations. The code is unfortunately not distinctly modular but the programmer can write it so that each module is identified clearly. Even when constructed using automated module combining programs the clarity of the modularity is diminished in the final combined code. JSim can run models archived in CellML and SBML using automated translation. JSim’s advantage over both CellML and SBML is the use of a broader range of mathematical constructs, incorporating not only PDE’s, but can drive code written in Matlab, C, or Fortran to take advantage of their broader range of computational methods.

SBML, developed at Caltech and now maintained by an international board of editors (http://sbml.org/), is an XML-based language for modeling molecular reaction pathways. Instead of taking a purely mathematical approach, it models reaction networks directly, allowing these networks to define a set of ordinary differential equations or other mathematical approaches for simulation. Previous versions of SBML did not support modularity though modular software tools have been written that use the original SBML, notably JigCell (http://en.scientificcommons.org/53559395), Antimony (http://bioinformatics.oxfordjournals.org/content/25/18/2452), and SemanticSBML [ref]. Incorporating modularity support into a common format is a complex process involving many stakeholders and only this year has the SBML community finally released a specification for supporting modular models in SBML. The Antimony language, which already supports modularity, will support the new format. These software tools, as well as the most recent proposal for incorporating modularity into the SBML language itself, have taken a hybrid hierarchical modeling approach, where it is possible to define an interface between a submodel and its containing model, but constructs are available to allow the containing model full access to the submodel if need be. This allows researchers to maintain ‘black box’ modeling internally, while still allowing model exchange with other labs which might have their own conventions and uses for the model, unanticipated by the original creators. In addition to SBML, there are also a wide variety of standards and ontologies that have been developed as a result of the development of SBML. Most notably are SBGN and SEDML. SBGN is a proposed graphical language for describing cellular networks while SEDML is a proposed standard for describing simulation experiments. Although SEDML was developed within the SBML community, SEDML itself is model language agnostic and can be used with other languages including CellML and MML.

Language Interchange. There are efforts to develop language translators between the various standards such as SBML, CellML and JSim. The most advanced is the Antimony language which can translate between CellML and SBML. However because of the philosophical difference between these languages, it has taken some effort to achieve robust translation from one to the other. JSim translates CellML and SBML into JSim’s MML but the reverse translation will only work for a subset of MML-based models since the mathematical coverage in MML is broader than either. In addition it is difficult to recover the network structures from the mathematical model along unless additional metadata is provided in the MML.
Using Common Ontologies is critical

The SBML, CellML, and JSim communities have recently recognized that modularization and model-sharing are greatly facilitated by formalized model annotations based on standardized terminologies and biomedical ontologies. The goal is to encode the biological meaning (the semantics) of model contents in a machine-readable form so that model variables that represent the same biological concept (e.g., aortic blood pressure or hexokinase activity) can be identified within code modules. Such annotation methods depend the large set of biomedical ontologies in existence that together provide standardized definitions of biomedical terms. Many of these ontologies, such as the Gene Ontology (GO) [PMID: 14681407], the Foundational Model of Anatomy (FMA - PMID: 14759820), and the Chemical Entities of Biological Interest (ChEBI - PMID: 17932057
) are widely used to annotate biomedical data, including the contents of simulation models. To support kinetic modeling, the SBML community developed the Systems Biology Ontology [ref] which allows kinetic laws in models to be unambiguously defined.

These reference ontologies are the critical ingredient for semantic modularity because they provide the concepts required to create explicit, machine-readable annotations of model contents. For example, GO defines sub-cellular-to-macromolecular physical entities, their functions and the biological processes in which they participate while the FMA defines subcellular-to-organ system entities. Together, biomedical reference ontologies describe concepts across all levels of biological organization, and therefore provide the foundation for multi-scale semantic modeling. Additionally, reference ontologies like the Ontology of Physics for Biology (OPB, [PMID: 18999003]) which defines the physical properties of physical entities, provides annotation components that scale across physical modeling domains. Therefore, a semantics-based approach to model modularity that is grounded in the use of reference ontologies scales across a wide variety of research domains and accommodates models at various physical scales.

SemSim: To reach the semantic level of modeling, the Semantics of Biological Processes group (UW-SBP; http://www.bhi.washington.edu/research/SemBioProcess/) at the University of Washington has developed SemSim modeling which encodes the biological content of mathematical models. The SemSim framework leverages the expressivity of currently available reference ontologies in order to create semantically interoperable models. SemSim is currently the only modeling framework for semantic modularity that is both multi-scale and multi-domain.

The UW-SBP group is currently extending their semantic approach to model annotation, sharing and module integration. In collaboration with the EU Virtual Physiological Human (EU-VPH; http://www.vph-noe.eu/) project, they have developed composite annotation technology [PMID: 20601121] that formalizes the annotation of multi-scale entities using “semantically orthogonal” ontologies such as ChEBI (for small molecules), GO (for gene products), and the FMA (for cellular and macroscale anatomical entities). Based on international ontology standards, these composite annotations provide machine-readable definitions of model terms that are independent of the grammar and syntax of specific modeling languages (e.g., CellML or SBML).

Annotating SemSim models with terms from reference ontologies helps automate modular model integration and decomposition tasks because it allows the modeler to model at the biological level, where the underlying code can be “black boxed” as needed. Furthermore, thoroughly annotated SemSim models interoperate in a modular way without the need to specify module interfaces ahead of time. When a user composes models that interoperate at the semantic level, a computer can automatically identify the biologically valid interfaces between them. Whereas “hard-coding” the interfaces between simulation modules may work for more targeted, single-lab modeling efforts, the larger modeling community requires a more scalable, general purpose approach to interfacing modules because different researchers may use the same model for very different model integration tasks.

Automated Model Construction from Prepared Modules:

Given clean ontology-based terms for domains, parameters and variables, the automation of model construction by combining modules has a solid basis. Two systems have recently been developed at the University of Washington, SemGen and FortMod. Both are in early phases. Antimony [ref Lucian Smith] and others will develop similar capabilities.

The SBML(Biomodels) and CellML models are both highly annotated with ontologies. This is a key to allowing software tools to develop both single scale and multiscale hierarchical models. (Automated methods would have to handle the existing CellML modularity somehow.) JSim models can be similarly labeled.

SemGen: The UW-Semantics of Biological Processes group has created a software tool, SemGen, that helps automate the modular composition and decomposition of SemSim models. Using SemGen, modelers can work at the semantic, or biological, level to perform model integration and extraction tasks and thus avoid the need for hand-coding interfaces between models. SemGen’s capabilities for model integration have been demonstrated across multiple physical scales and physical domains [Neal 2010] For example, SemGen was used to merge a cardiovascular dynamics model with a baroreceptor model in order to produce an integrated system where changes in arterial blood pressure affect heart rate. This system was subsequently integrated with a third, independent model of calcium dynamics in vascular smooth muscle. In this larger integrated system, increases in calcium levels in the smooth muscle model raise vascular resistance, which in turn increase arterial blood pressure, and lower heart rate. This merging task was performed with no manual edits to simulation code. SemGen also successfully merged the Nielsen et al. [PMID: 17029704] model of glycolysis with a pentose phosphate pathway (PPP) module that was automatically extracted from the carbon metabolism model of Chassagnole et al. (PMID: 17590932]. The process is diagrammed in Figure 3. Both of the component models used in this example were originally coded in SBML, translated by JSim into MML, and annotated using standard ontologies. The glycolysis module was a stand-alone program, but the Pentose shunt module had to be identified and extracted from Chassagnole’s metabolic model in this case. The merger was semi-automatic; the SemGen construct was then translated into MML for running solutions under JSim. This demonstrates SemGen’s utility across physical scales, modeling domains, and modeling languages.

[image: image2.png]MML

Nielsen

»

ez

Annotator| |Extractor

Annotator

Figure 3. Use of SemGen to combine the Chassagnole et al. model of the pentose phosphate pathway (PPP) with the Nielsen et al. model of glycolysis.
FortMod: This is a Fortran-based composing system which uses any ontology so long as it is consistent in having names unique to each common variable and the parameters and variables that are unique to each module uniquely named (Raymond, 2008, 2010). The Fortran version provides the logical structure for the process and is the basis for developing a more general system in Java. The module-combining program requires that three labels be placed in each of the component models each considered to be a module; these designate the model entry, the domains, and the end of the operational code.

The equations including variables common to several modules are combined automatically. The combining leads to a reduction in the total number of equations, and ends up with a set of composite equations in which the original modules cannot necessarily be easily identified. Reverse deconstructing of the model into the original models will be difficult, and has not been attempted.

 Ideally, modules should be reusable or re-entrant, so that the code is not rewritten for each instantiation. A compromise necessitated by the flat non-modular nature of JSim's compiled code is to automate the renaming all the code within a module being used a second or third time, as is accomplished with FortMod, so that multiple versions of the same operator are given new names. This is not so much of a problem in procedural languages that allow reentrant code.
Antimony: Model exchange in systems biology has been standardized for computers with the Systems Biology Markup Language (SBML) and CellML, but specialized software is needed for the generation of models in these formats. Text-based model definition languages allow researchers to create models simply, and then export them to a common exchange format. Moreover, a modular language, such as Antimony, allows researchers to create and combine complex models more easily with simple text based instruction. The Antimony [ref, http://antimony.sourceforge.net/] language, developed as part of the SBW project, was developed to allow researchers to use simple text statements to create, import, and combine biological models, allowing complex models to be built from simpler models, and provides a special syntax for the creation of modular genetic networks. The libAntimony library allows other software packages to import these models and convert them either to SBML or their own internal format. Antimony also has the ability to interconvert CellML and SBML with the proviso that conversion of CellML to SBML is difficult because of the problem in reconstructing the original biological network underlying the mathematical model.
Applications using Modular Construction

Membrane transport in axially distributed multicomponent systems

FORTMOD has succeeded in incorporating bidirectional competitive transporters in convection-diffusion-permeation-reaction systems using PDEs as well as with systems of ODEs. This demonstrates the capability for the automatic generation of PKPD systems where the modules are chosen for the specific situation relevant to the pharmaceutical agent, its mode of delivery, its distributional kinetics, its target specificity, and its degradation or clearance. The pharmacodynamics side of the model will be peculiar to the physiological system, the status of the receptor-response systems, and the influence on agent binding by the physiological system.

Cellular Electrophysiology:

 The cell membrane potential is defined by the net charge difference across a membrane and the capacitance of the membrane. The charge balance is governed by a set of ionic currents carrying charges across the cell membranes. The integral proteins involved include ion-selective channel proteins, exchangers or transporters, and energy-coupled pumps. The Hodgkin-Huxley (1952) model for the action potential in the squid giant axon pioneered quantitative modeling of ion fluxes and action potentials in excitable cells. Models for cardiac cells followed (Nobel 1962), though were soon found to be more complex, having for example, calcium channels (Beeler Reuter 1977) that had not been noted in the nerve studies.

The regulation of a cell's ionic milieu is an ideal application of modular methods. Each channel is highly selective. The channel conductances are time-and voltage dependent, but not dependent on the concentrations of the ions. The fluxes are driven by the electrochemical gradient and are therefore dependent on concentrations of the particular ions. Given the independence of each of the individual charge-carrying entities, each can be defined as a module and coded as a complete model. (In order to demonstrate the time- and voltage-dependence of the kinetics of the conductance changes, one would use a voltage clamp approach.) Then integrating a selected set of entities into a merged model can be automated. This has been accomplished with both SemGen and FortMod and the methods are being further evaluated and refined.

Extending flat modeling to a modular scale

An example of a complex, single level model is one for the regulation of the ionic concentrations in an excitable cell. Consider each channel, ion pump, transporter, or exchanger as an independent module. The "environmental" conditions for all of them are the composition of the external and internal milieu and the transmembrane voltage. Given their instantaneous conditions the time and voltage dependence of the internal conditions, the conductances and then the fluxes can be calculated from the electrophysiological equations. Since the modules are all, in this case, totally independent of one another, except through their varied influences on the membrane potential and the transmembrane concentration differences, their internal calculation are uninfluenced by other modules. This is then an ideal situation in which variants of a chosen module can be inserted in order to determine the influence on the overall system.

A particular example is that of the IKS channel of the cardiomyocyte as demonstrated by Silva and Rudy (2010). The module for this channel could provide the kinetics of the normal channel or that of the abnormal mutation (KcnQ1) giving rise to the LongQT syndrome, in which the repolarization of the membrane is slowed. These authors also determined the time and voltage dependencies of the channel using computational molecular dynamics, so in principal their supercomputer calculations could also serve as an equivalent module; this makes it obvious that module simplification or reduction is the usual goal in making a substitution.

 (Their modeling is a masterpiece of integrative systems modeling, going from the gene sequence to the protein conformational states, to the channel conductances and current flows, to the spread of excitation and the susceptibility to arrhythmia in the intact contracting heart. The Long QT Syndrome is, I think, the first disease, causing sudden death in young athletes, whose mechanisms have been clearly elucidated from gene to organ and organism in humans. Even cystic fibrosis is not so nicely defined.)

Thus automated construction of a model for cellular ionic regulation is now a reality, given a set of modules for channels, pumps, transporters, and exchangers that are either semantically interoperable or contain consistently formatted module code that can be interpreted for assembly and aggregation. In the former case the semantics of each module must be unambiguous so that integration tools recognize the identity of the elements and preserve their uniqueness in the merged system. The parameters should also be uniquely named for each of the modules, especially if they are to be merged into a single master program rather than maintained in isolation within a subroutine. However, semantic integration tools like SemGen (see below) recognize identical parameter names during merging and prompt the user to create new, unique names where needed.
Application to Synthetic Biology

Modeling in synthetic biology is inherently modular in style just as engineers design new devices from existing parts. The Registry of Standard Biological Parts (http://partsregistry.org/) contains thousands of genetic sequences intended for use in this way, with each part in the registry designed for a particular function. Currently this database also contains English-text descriptors for parts that are not yet functional models. The Sauro lab together with Michael Galdzicki and John Gennari at UW and collaborators from Stanford, Berkeley, JBEI (Joint BioEnergyInstitute at Berkeley) and Virginia Tech, have organized the Synthetic Biology Data Exchange Group. This group originated from a series of workshops starting in 2008 and aims to develop standards and technologies to facilitate the electronic exchange of synthetic biology information. The overall goal is to describe data in the domain using a defined but extensible scheme to enable electronic exchange and unambiguous communication of the information. The exchange must be intentionally modular to enable engineers to combine parts and devices with relative ease.
To address these goals two complementary projects emerged to define the Synthetic Biology Open Language (SBOL). One is to develop an ontology, SBOL-semantic, which serves both as an organizing structure or information and as a standard exchange format through its use of RDF/OWL (Web Ontology Language). The second project is the definition of a set of graphical symbols SBOL-visual (SBOLv) which assigns a preferred icon for commonly used concepts, thereby reducing the ambiguity of diagrams used informally, within graphical user interfaces, and published. In synthetic biology, modeling is just one small aspect of the engineering enterprise and whatever standards emerge, they must encompass a variety of needs for the synthetic biology community. With respect to the need for modeling, modular SBML is one possible choice because it is relatively easy to map the biological information required for a synthetic biology design to the various parts of the SBML description.
Module Formats -- Can a Common Module Standard be formulated?

In order to substitute modules for one another on the fly while computing there are two requirements: (1) a set of alternative modules must be prepared, and (2) a decision must be automated.

A common scenario is that there is a set of modules serving the same function. One is the “master” or reference form, the one with the best approximation to the biology and the most detailed, robust and adaptive to changing conditions. The others might be a variety of reduced forms, approximations for simplicity or speed or a few different ones each specific to particular region of state space where it provides an adequate level of local robustness but is computationally faster than the master model. One expects all of the set of modules to have the same inputs Where a module with lesser degree replaces one with a greater degree, "terminator", "shunt", or simulation harnesses must be attached to the now disconnected neighbor modules to cap off those edges. The specification of these neighbor modules should describe how those edges should be capped. Similarly, when a module of higher degree replaces a module of lesser degree, there must be a discovery mechanism to find out if the model as a whole contains candidate neighbors to the dangling edges should be connected. Other inputs will be subject to transformations produced via the module; a chemical reactant module would take in a solute and produce a new solute product. One looks for the means to assess fundamental balances in such transformations: atomic species, mass, charge, energy.
In order to maintain robust model behavior there will commonly be a need to return from using reduced model form to using the more complex “master” module form when the position in state space moves out of the circumscribed range of accurate operation of a reduced form module. Here we predict the use of artificial intelligence to define how to recognize inadequacy in the module behavior, how to regroup on the fly while maintaining computational capability to optimize the model to a continuously acquired signal, e.g. as in monitoring a patient in the ICU and operating the model to adjust the IV inflow or call a nurse.
Recommendations

Model Exchange

Modules developed by labs around the world can be reused by investigators formulating new higher level integrated models. But the modules have to be appropriately accurate and completely understandable. While a module may be internally complicated, its number of “connections” to the region external from it is always limited. Modules with the fewest connectors are generally the easiest to define, to connect and to maintain.

Achieving Reproducibility in Reporting on Models
There are surprisingly few models that can actually be reproduced from the original published paper. Hodgkin and Huxley (1952) set a high standard: their figures can be reproduced from the equations and parameters they provide. The field of electrophysiology is exceptional in this regard: the classic papers of Noble (1962) and of Beeler and Reuter (1977) are likewise reproducible.

Reproducibility has twin aspects: utility and transparency. Adherence to notational and formatting standards makes for ease of utility. Clarity of presentation and using step by step logic in explaining the model, its principal function, its perspective and what can be done with it as a building block all help to make it useful as a stepping stone for others. A set of "Standards for Biophysical Models" is available at www.physiome.org/Models/standards.html. These set a high bar, for it is almost impossible to fulfill all the requirements for the "Class 4" biophysically-based models described there. At a minimum there should be unitary balance (Chizeck et al.) The problem is the difficulty in demonstrating exact mass balance, charge balance, energy balances and osmotic balance, and in fact most models do not need to adhere to ALL of these. However at the top of that list are unitary balance and mass balance. Unitary balance is mandatory and without it there are errors, almost always. Mass balance, that is , conservation of mass, volume by volume and species by species is easier to attain, and is a critical part of the verification that the model is correctly computed.

The initial keys to model reproducibility are logical construction of the model and clear presentation in the publication. ALL of the equations and parameters should be in the published article, without typographical errors, with units on everything, and with source references for all of the parameter values. One way of achieving this state of blessedness is to have the journal's reviewers test the model, and reproduce the figures.

An early example of a collaborative success in this approach occurred with the publication of the action potential model of Winslow et al (1999; Greenstein, 2000). As the article was under review for Circulation Research, having a well-written manuscript in hand, we coded the model in JSim from their tables and equations. On finding a few problems we communicated with the authors, corrected the equations while they corrected the manuscript, and through a couple of iterations achieved consilience between our code in JSim, their code, and the manuscript presentation. The paper was then published by the American Heart Association, and by prior agreement, released on a Thursday afternoon at 4 PM coincident with our release of their model on the UW Physiome website. (www.physiome.org/Models/CellPhysiology/ActionPotential). This demonstrated a mode of operation for publishing and disseminating the results of the authors work in a reproducible and readily available form, complete with numerical solvers and graphs of the results of the simulation matching their results. While CellML and SBML do not designate the methods of solution, the graphics, or supply the experimental data by which the model is validated, and the data characterized by optimization of the model solution to the data, they both do offer a means of disseminating the models.

Standards for Models and Modules

Standards for biophysical/biochemical models have been developed over the past years in order to foster reproducibility. The elements, in addition to identifying and descriptive characterization are verification that the model code is mathematically and computationally correct, and that the model is validated by comparison with experimental data. A working set of standards for either models or modules is in Table 1.

Table 1. Checklist for Model Code against expectation for Physico-chemical modeling, as applied to a OxyHemoglobin model at www.physiome.org/Models

[image: image3.png](CHECKLIST: MODEL vs. DESIRED PCHEM STANDARDS:
Check YES (either manual or auto I standard met) X = VES
Model No. & Name: Model Author: Checker N
Name: 027: HbO2Severinghaus 388/ Jardine 35| % E:;'j’"’

3| 8lotherz.

Group 1: Identification snd Description
1. Model Name, Key words (generic 5nd specific X Jx
2, Brief one or two Iine deseription I
3. Detailed description, dizgrams, equations I
4. Referance to Publication describing the model I
5. Pointer to the publication or pdf I
6. Related Models, antecedents, comparables, and successors I

Group 2. Model Structure and Content
1. Domain definition (cells_ mito, tissues, organ system, organism) Soln compart.
2. Main variables (chemicals, pressures, etc.), with unts x 02
3. Porameters, with units, ond with source references x
4. Descriptions and references for subsidiary models N/A
5. Source Code: Clear, dacply commented, explained, referenced. x
6. Inputs and outputs defined. All nodes and edges defined. x
7. Define linkage type (Chemical, electrical, mechanical,etc.) x chem
5. Ontology base for notation
5. Numerical solvers used, and conditions set x

Group 3. Verification: math of model snd solution methods are sound
1. Unitory Bolance: (units on all variables and perameters) x
2. Mass balance: (it consfituents whose conservation is checked) x
5. Charge balance: (ion currents, membrane potential) A
4. Osmotic balance: (volume, total activites, fluxes) A
5. Thermodynamic Balance (Haldene constraints on reactions) VA
6. All cquations correct, units balance, with ol terms defined x
7. Numerica solutions checked ageinst enalytical solutions N/A
6. Running code supplied in & common formt x
5. Solutions show itle dependence on fime or space step size x
10. Methods for verifcation defined. Reference model solution? x

Group 4. Validstion: model s physiclogically realisic
1. Initol and boundary conditions in accord with physiclogy WA
2. Doto provided, and fitted by model x
3. Model is prediciive, shown to it other data not used as basis x
4 Parameters justified (sources provided) and evaluated x

Group 5 Avallabilty of Source Code and Forum for criiques
1. Website source from which to download model code and data x
2. Website or email or address to accept queries x
5. Website for public commentary and responses x
[4- References to subsequent publications or alternative models

The BioModels database (www.ebi.ac.uk/Biomodels-main) is an excellent repository of 269 curated and 361 non-curated models (as of October 2010), stored in the SBML format, which can be downloaded and simulated in a wide variety of software tools (http://sbml.org/SBML_Software_Guide). The Biomodels group is also the designer of MIRIAM (Minimum Information Requested In the Annotation of biochemical Models) (LeNovere et al 2005). The intent of MIRIAM is to make sure that selected published models are archived correctly, and that they can be downloaded and used, so the emphasis is on matching the model and the publication; improving the models to represent the biology better is not a part of their effort, nor does it attempt to impose scientific standards equivalent to those Standards proposed for the multiscale modeling effort (imagwiki.org/mediawiki ... This site). Those tasks are left to the peer-review process for the journal articles they extract models from.

A beginning development by the SBML/BioModels consortium is SEDML, Simulation Experiment Design Markup Language. The purpose of SEDML is to provide a description of the model as an experiment. In addition to referencing the model description the current version allows a modeler to specify inputs such initial conditions, input functions, duration of the simulation run, a definition of the numerical methods, an output and graphical display. It might provide a set of figures demonstrating the behavior of the model. The advantage of separating the model from the simulation description is that models can be encoded in any format including SBML, CellML or MML. SEDML could also allow comparisons between model solutions and analytical solutions, but only if these were coded in the model file directly; this would be a means of verification of the code and numerical methods for mathematical accuracy. SEDML also provides a convenient vehicle for comparing simulation software written by different authors and thus permits a level of quality control amongst published simulators which at present is largely lacking.

However SEDML does not yet provide a means to include experimental data, nor provide statements to describe optimizing the fitting of model solutions to experimental data, nor tests of the influences of noise or numerical resolution on solutions, nor estimates of parameter covariance and confidence limits, all of which are needed for model validation. However SEDML is an extensible format and these features could be added at a later date depending on community needs. Thus the combination of SBML/CellML and SEDML files do not yet provide a means of validating the model. In actuality the verification can only be done when there is a computational platform allowing verification testing. These missing features are all included in JSim's project files, allowing both verification and validation of the biological applicability of the model.
SUMMARY:

Modularity is at the heart of reproducible, sharable, collaborative multi-scale model development and preservation. Module substitution is key to flexibility in modeling for diverse purposes while maintaining modules in source libraries for public use. The efficiency in advancing science is improved by allowing reuse of models and by providing educational tools that are practical elements in developing an understanding of systems. Practical standards for modules are little different from those for reproducible modeling in general, and the development of model databases with improving standards is enhancing modular model usage.

References:

683. Beeler GW Jr and Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol (Lond) 268: 177-210, 1977.

Bergmann Frank T. and Sauro Herbert M. SBW - a modular framework for systems biology. In WSC ’06: Proceedings of the 38th conference on Winter simulation, pages 1637–1645. Winter Simulation Conference, 2006

10632. Chizeck HJ, Butterworth E, and Bassingthwaighte JB. Error detection and unit conversion. Automated unit balancing in modeling interface systems. IEEE Eng Med Biol 28(3): 50-58, 2009.

Cooling MT, Rouilly V, Misirli G, Lawson J, Yu T, Hallinan J, and Wipat A. Standard virtual biological parts: a repository of modular modeling components for synthetic biology. BIOINFORMATICS 26 (7): 925–931, 2010. doi:10.1093/bioinformatics/btq063

6795. Greenstein JL, Wu R, Po S, Tomaselli GF, and Winslow RL. Role of the calcium-independent transient outward current Ito1in shaping action potential morphology and duration. Circ Res 87: 1026-1033, 2000.

700. Hodgkin AL and Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500-544, 1952.

Neal, Maxwell L. [PMID: 20601121 AND Neal, ML. Modular, semantics-based composition of biosimulation models. Unpublished dissertation. 2010]
7534. Noble D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-make potentials. J Physiol 160: 317-352, 1962.

8127. Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vidas J, Crampin EJ, Halstead M, Klipp E, Mendez P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, and Wanner B. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotech 23: 1509-1515, 2005.

Pedersen Michael. Modular Languages for Systems and Synthetic Biology. PhD Thesis University of Edinburgh. 2010

Platt JR. Strong inference. Science 146: 347-353, 1964

Raymond 2008, 2010

Smith Lucian P. , Bergmann Frank T., Chandran Deepak, and Sauro Herbert M.. Antimony: a modular model definition language. Bioinformatics, 25(18):2452–2454, 2009.
W. Stevens, G. Myers, L. Constantine, "Structured Design", IBM Systems Journal, 13 (2), 115-139, 1974
8126. ten Tusscher KHW J, Noble D, Noble PJ, and Panfilov AV. A model for human ventricular tissue. Am J Physiol, Heart Circ 286: H1573-1589, 2004.

Vanlier J, Wu F, Qi F, Vinnakota KC, Han Y, Dash RK, Yang F, Beard DA. BISEN: Biochemical SImulation ENvironment. Bioinformatics. 25:836-837, 2009. (PMID: 19244386)

6646. Winslow RL, Rice J, Jafri S, Marba'n E, and O'Rourke B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: Model studies. Circ Res 84: 571-586, 1999.

CellML Model Repository at Auckland NZ http://models.cellml.org/cellml

SBML and the BioModels Database at EBI, Cambridge UK

JSim : http://nsr.bioeng.washington.edu/jsim

The Physiome Model Repository: http://nsr.bioeng.washington.edu/Models
LEFTOVERS:

Unfortunately, dedication to producing reproducible research is not commonly found amongst authors, reviewers, journals or even federal funding agencies.

Lucian’s Outline:

Definition of modularity

Different types of modularity

· Aggregation

· Black box

· Hierarchical composition

Advantages of modularity

Why standardized exchange formats are critical

What exchange formats there are; what they do well

· CellML

· JSim

· SBML

What ontologies there are; what they cover and do well

Areas where modularity has been/can be applied

· Systems biology

· Synthetic biology

· Multi-scale modeling

· Physiology

· …Others?

Looking towards the future:

· recommendations,

· potential avenues

……………………………

[[From Lucian: So, I came up with an outline for the paper as a whole, and while I took a little of what was written before, most of the Introduction through Exchange Formats is me. Feel free to re-write as needed. The rest post-Exchange Formats is my organization of the pre-existing text, into two sections: ‘Applications’ (where I mean ‘what currently exists or could exist’) and ‘Recommendations (where I mean ‘what should exist, and what should it look like’). These sections need still some revision and organization to be coherent. Again, this is just my own vision for the paper, and you all should feel free to revamp as needed, particularly where old sections no longer make sense in the new organization, or where new sections are off-base!
At the very end is my overall outline that I worked with on this paper, so you can see what the goal was.]]
� EMBED Word.Document.8 \s ���

�See my comment on p. 3

�We have not yet mentioned the obvious functional requirement: to help explore the systemic effects of using one module instead of another: 1) to look for representational (abiotic) / computational artifacts; 2) to provide the forward map in order to solve the inverse map (i.e., help discover which of two [inaccurate] modules is more accurate); 3) for curation of new modules in the same family.

To address this, I’ve inserted text in Intro. Paragraphs 2 & 3 (by adding and using we start using the graph terminology), and I changed text in “Advantages of Modularity” & “Module Substitution.”

�This insert relates to my comments below on p.9 in section “Advantages of Modularity:” “Same section of text…”

�Not sure I understand this section. This three-level definition seems too limited, and focused only on biochemical network models.

�Where is this example?

�Same section, same text:

It is often the case that a more accurate ("master") form of a module will have many more "connections" to other modules (at all of sibling, inner, and outer layers) because higher accuracy means taking into account more detail, more facts, data, attributes, perspectives, &/or knowledge. Although as engineers, we tend to think of the biology as discrete and composed of somewhat independent biological components, it rarely is completely discrete (and it can act discrete under one condition, but not another)

In this respect, this whitepaper should explicitly address the case where 2 modules capture the same function except one has more "connections" to other surrounding phenomena than the other. Are those "connections" shunted, harnessed with a simplified simulator of the signals that would have been there, etc?

I’ve added such text near the introduction of the "master" module concept in section "Defining the purposes for modules:"

�Should this first sentence be here?

�In case it wasn’t clear, I put these PubMed IDs in to point you to the references that should be cited here

[image: image5.wmf]

_1223304627.doc
[image: image1.png]Fast Composite
Solution \ Model

Increasing Increasing
Simplicity Complexity
but
Decreasing
Adaptability

Detailed
High Modules

Fidelity

