Scales of carcinogenesis: cells, crypts and cancer Georg Luebeck (PI) - Carlo Maley (Co-PI)

A LIFE OF SCIENCE

Reid Lab (Barrett's Esophagus)

Dennis Chao* Tom Paulson Brian Reid

Biomathematics/Biostatistics

Bill Hazelton Jihyoun Jeon* Suresh Moolgavkar

Maley Lab (Computational Biology)

David Birtwell* Tom Eck* Doug West*

Scales of neoplastic progression:

example: Barrett's esophagus

first attempts (1950's)

acquisition of requisite mutations, (LOH, translocations, amplifications, DNA (hyper)methylation,...)

multistage carcinogenesis (Armitage & Doll, Nordling - 1950's)

age (years)

neoplastic progression 00000000 0000000 Tt x

acquisition of (epi)genetic events leading to neoplastic alterations in cellular organization

tumor progression & clinical detection

spatial & temporal scales:

<u>compartments</u>

parameters

stem cells	mutation rates
stem cell niche	——— time to fixation or extinction
tissue level	cell kinetic parameters
	(birth and death rates)
population level	incidence rates (hazard fct)

we don't know how clones expand across crypt structured tissue

clonal expansion of (injury)resistant population

loss of crypt (injury)

Image: Constraint of the second se

resistant stem cells

clonal expansion of (injury)resistant population

module 1: from a cell to a proliferative unit (Potten, Loeffler,...)

questions:

1. how are crypts organized?

Number(distribution) of stem cells

Stem cell kinetics

Homeostatic regulation/differentiation (David Birtwell)

- 2. how do mutant cells fare in a crypt that undergoes cell turnover (extinction/fixation)?
- 3. number of rate-limiting events to 'initiation'? (Jihyoun Jeon)

module 2: from a proliferative unit to a tissue unit (organ)

questions:

- 1. how do the number of stem cells per crypt affect carcinogenesis?
- 2. how does the proportion of deleterious to advantageous mutations affect carcinogenesis?

(see David Birtwell's poster)

module 2: from a proliferative unit to a tissue unit (organ)

questions:

1. what can the shape of clones tell us?

(see Tom Eck's poster)

module 2: from a proliferative unit to a tissue unit (organ)

questions:

 can the genetic distance between proliferative units reveal the history and mechanism of wounding?

(see Doug West's poster)

module 3: from a tissue unit to cancer in populations (tumor progression, invasion, detection, screening)

questions:

- 1. what modifies cancer incidence rates (effect modifiers, trends)?
- 2. what is the prevalence of individuals at specific stages in carcinogenesis?

Use model to improve cancer screening/surveillance.

(see Jihyoun Jeon's poster)

Significance of modeling neoplastic progression

HUTCHINSON

- generating hypotheses for phenomena in carcinogenesis
- guiding experiments
- focusing interventions on parameters that have the greatest effect on carcinogenesis

example: colon cancer

Luebeck and Moolgavkar Proc Natl Acad Sci U S A. 2002 Nov 12;99(23)