

Chondrocyte Deformation as a Function of Tibiofemoral Joint Loading

Ahmet Erdemir & Scott Sibole-

Computational Biomodeling Core Department of Biomedical Engineering Lerner Research Institute Cleveland Clinic

October 5, 2011

MSM Consortium Meeting

Combining Data-Driven and Mechanistic Modeling Techniques Bethesda, MD

Role of Cell Deformations

Cellular deformation plays a role in:

Cell activity^a Matrix remodelling Chemical signaling Profileration Gene expression

Cell differentiation^b

Cell vitality^c

In musculoskeletal biomechanics, **joint loading** results in **chondrocyte deformations** in cartilage.

^aadapted from Moon et al., Nat Rev Genet 5: 691-701, 2004. ^badapted from Huang et al., Arch Med Res 41: 497-505, 2010. ^cadapted from Chen et al., J Orthop Res 21: 888-898. 2003.

Quantifying Cell Deformations

Experiments with

in situ tissue explants, cell seeded constructs

help understand load transfer to cells.

Animal studies^{*a*} can relate simplified musculoskeletal loading to chondrocyte deformations.

Computational modeling can relate

muscle forces joint kinematics/kinetics cartilage stress/strain chondrocyte deformations

for complex geometries and lifelike loading.

^aadapted from Abusara et al., J Biomech 44: 930-934, 2011.

Objectives

- Establish a **post-processing platform** to analyze macroscopic tissue deformations for calculation of cell deformations
- For a given tibiofemoral joint loading, estimate regional chondrocyte deformations in tibial and femoral cartilage
- Explore the relationship between macroscopic cartilage strains and chondrocyte deformations
- Investigate the role of single vs multiple cell representations on prediction of chondrocyte deformations

Joint Level Modeling

Ligaments Cartilage^a Meniscus Bones transversely isotropic hyperelastic Mooney-Rivlin: E = 10 MPa, v = 0.48transversely isotropic hyperelastic rigid body

Implicit dynamics

Compression up to 780 N (1 body weight)

^aadapted from Shepher and Seedhom, Rheumatology 38: 124-132, 1999.

Cell Level Modeling

Single^a vs 11-cell^b RVEs

Extracellular Matrix

 $\begin{array}{l} 100 \text{x} 100 \text{x} 100 \ \mu\text{m} \\ \text{Mooney-Rivlin: E} = 10 \ \text{MPa}, \ \nu = 0.48 \end{array}$

Pericellular Matrix^c

2.5 μm thickness Mooney-Rivlin: E = 2.8665 MPa, ν = 0.048

Cell^c

5.0 μm radius Mooney-Rivlin: E = 0.2398 MPa, ν = 0.48

^aadapted from Guilak and Mow, J Biomech 33: 1663-1673, 2000. ^badapted from Hunziker et al., Osteoarthritis Cartilage 10: 564-572, 2002. ^cadapted from Michalek and Iatridis, J Biomech 40: 1405-1409. 2007.

Coupling & Simulation Strategy

Post-processing approach

Deformation gradient of macro-model drives micro-scale simulations.

Python scripting allows streamlined processing of macro/micro simulations.

Tackling Computational Cost

Problem Size

11 cell model: 249834 equations 7882 models

Parallelization

100 threads on Glenn Cluster @ OSC Wall-clock time (slowest thread) ~ **19 hours** Total CPU time ~ **1735.1 hours (72.3 days)**

Post-processing approach is also suitable for grid computing.

Ohio Supercomputer Center

Empower. Partner. Lead.

Macroscopic Map of Cartilage

Macroscopic and microscopic deformations for the transitional zone

femoral and tibial cartilage

Microscopic Map of Individual Cells

Macro-Micro Relationships

effective macroscopic cartilage strain ~ change in chondrocyte aspect ratio

Discussion

- Establish a **post-processing platform** to analyze macroscopic tissue deformations for calculation of cell deformations
 - Hypothesis generation platform to provide insight into how cells may be deforming under lifelike loading
 - Highly scalable parallelized processing
 - Generalizable for different macro/micro models
 - Weak coupling (assumption of mechanical consistency)
 - Cell deformation metrics at a snapshot (no mechanical history)
- For a given tibiofemoral joint loading, estimate regional chondrocyte deformations in tibial and femoral cartilage
 - A step towards the realization of relating knee joint mechanics to the mechanics of chondrocytes
 - Full spatial analysis of cartilage rather than a handful of limited spatial locations
 - No verification & validation

Discussion

Explore the relationship between macroscopic cartilage strains and chondrocyte deformations

- Amplified transfer of macroscopic strains to cells
- Linear relationship between macro/micro variables with some variability
- Large database of cell deformations for functional tibiofemoral joint loading
- Investigate the role of single vs multiple cell representations on prediction of chondrocyte deformations
 - Indications of strain shielding for multiple cell distributions
 - Neighboring cells may not experience similar levels of deformations
 - Onset of mechanobiological function and damage may be spatially different
 - Cell-to-cell interactions

Future Work

Complex cell shapes and distributions

single cell & cell clusters

high density cell distribution

x10⁻³ 2.63 2.37 2.11

1.85

1.59

1.33

1.06

Pathways for Translation

Musculoskeletal markers of age-related changes in cartilage and chondrocyte mechanics

Macro/micromechanical environment of cartilage during progression of osteoarthritis

^aadapted from Pritzker et al., Osteoarthritis Cartilage 14: 13-29, 2006.

Bridging to Higher Scales

Relationship between joint loading and chondrocyte deformations

ACKNOWLEDGMENTS

project hosting by fimbio

computing resources by

simulation software by

Ohio Supercomputer Center Empower. Partner. Lead.

https://simtk.org/home/j2c

R01EB009643 NIBIB/NIH Ahmet Erdemir (PI)

> Frank Baaijens **Craig Bennetts** Tara Bonner Snehal Chokhandre Robb Colbrunn Stefan de Vries Farshid Guilak Jason Halloran Ying Luan Steve Maas Cees Oomens **David Rawlins** Scott Sibole Nicholas Tan Rene van Donkelaar Mark van Turnhout Amit Vasanii Jeff Weiss

CONTACT

Ahmet Erdemir erdemira@ccf.org +1 (216) 445 9523

http://www.lerner.ccf.org/bme/cobi http://www.lerner.ccf.org/bme/erdemir