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Executive Summary

The Epitheliome project1 aims to use agent-based modelling to develop a
computational model that is able to predict the emergent behaviour of cells
in epithelial tissues. Agent-based modelling provides more innovative ap-
proaches to facilitating research into the unresolved issues of complex sys-
tems. The huge amount of data provided by the sequencing of the human
genome and the variant time scale (milliseconds to months) of processes
taking place within the tissue are among the complexities involved in un-
derstanding biological processes. Computational models are believed to be
of great utility managing such complexities and enhancing our understand-
ing of biological systems. This document gives insights into the modelling
framework, FLAME, and how it can be applied to biological modelling.

An agent-based modelling framework, FLAME [5], developed at the Uni-
versity of Sheffield, has been successfully used to model biological systems
and has already uncovered some useful results. The framework, which uses
X-machines as the basic computational model is flexible enough to be ap-
plied to various disciplines from biology to economics. Some of the features
which make it flexible are described in the report:

• The framework uses XMML, X-machine markup modelling language,
to define agents and the communications between them.

• Various features are provided by XMML and the framework that allow
modellers to design their own models and simulate them over time.

• A few examples of its application to biological models have proven its
success and are presented here.

• The project team work closely with biologists from the universities of
Sheffield and York (Jack Birch Unit for Molecular Carcinogenesis) to
understand and interpret cell behaviour, and use this information to
produce accurate models.

• The University of Sheffield also works with the Rutherford Appleton
Laboratories to produce efficient models for deployment on parallel
platforms.

Various examples of biological models have been produced highlighting the
success of the framework and XMML. These include the keratinocyte (skin)
[15] and the Urothelial Cell (bladder) [18] models. Results of the ker-
atinocyte cell model are illustrated in this document.

This document presents the framework, and shows how the XMML
schema can be used to produce various models of the epithelial cells.

1The main project is supported by the EPSRC (Engineering and Physical Sciences
Research Council) by a project grant of £2m.
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1 Introduction

This document contains details of agent based simulations of biological sys-
tems. The document also presents a definition of the XMML modelling
language and how models can be written using it.

The remainder of the document will be organised as follows:

• Background - Overview of agent-based modelling and software sys-
tem specification;

• Design Decisions - Contains implementation issues surrounding the
modelling requirements;

• Biological Models: The Keratinocyte Model - Presents the Ker-
atinocyte, or skin cell, model;

• Framework Implementation - Contains implementation details of
the framework;

• Model Creation - Contains details about how to construct models;

• Links to External Solvers: COPASI Example - Contains details
about how to construct models which uses COPASI

• Appendix A – XMML Schema, which formally defines the XMML
language;

• Appendix B – Keratinocyte Model XMML, which formally de-
fines the Keratinocyte model;

May 8, 2008 Page 6/58



Epitheliome Project Report

2 Background

Agent-based modelling is a large research field allowing researchers to ex-
plore complex systems. Examples of which include ant and bee colonies,
biological cellular structures and human societies. The importance of this
approach is that it allows a bottom-up procedure, where the focus goes into
the individual interacting units which possess defined rules. Accompany-
ing these rules, when simulated, the individual interactions will produce an
emergent pattern of behaviour which can be observed of the system as whole.
This pattern can then be studied to test and understand the behaviour of
the complex system deducing if the rules introduced were justifiable or need
alteration. This helps deeper understanding of the interacting agents and
their behaviour which was otherwise not easily observable if these systems
were viewed as a whole.

The term ‘agent ’, as Tesfatsion [16] describes, ‘refers broadly to a bundle
of data and behavioural methods representing an entity constituting part of
a computationally constructed world’. In computational systems biology,
the definition of an agent can also vary from representing a group of agents
like a colony composed of many cells or an individual cell like a stem cell or
a dead cell.

Agent-based modelling takes the view that systems can be modelled
using many interacting objects. Objects, or agents, are self-contained au-
tonomous machines that can communicate with each other. To put a more
precise definition onto an agent, we suggest a formal computational model
based on specifying software systems called X-machines. XMML is the mod-
elling language used to represent these agents as X-machines and how they
will be communicating between each other.

2.1 X-Machines

The X-machine is a general computational model introduced by Eilenberg
[6] and later modified to represent more complex architectures at the Uni-
versity of Sheffield [8]. Contrary to Turing machines, X-machines have been
used to model complex systems and have enhanced their own capability to
more complex structures. One of the enhancements of the X-machine is the
communicating X-machine of which there are several approaches [1, 2]. The
approach used in XMML consists of a set of autonomous X-machines which
use messages to communicate with each other. There are no explicit input
or output components of these machines apart from this. Figure 2 depicts
the structure of an X-machine agent.

Stream X-machines, introduced by Laycock [13], are another extension
of the basic X-machine model and forms the basis for defining the agents in
XMML. The basic definition of an agent would thus, in accordance to the
computational model, contain the following components:

1. A finite set of internal states.

2. A set of transition functions that operate between states.
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s 1 s 2
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Figure 1: Transition function

3. An internal memory set. In practice, the memory would be a finite set
and can be structured in any way required.

4. A language for sending and receiving messages between other agents.

X = (Σ,Γ, Q,M,Φ, F, q0,m0) (1)

where,

• Σ are the set of input alphabets

• Γ are the set of output alphabets

• Q denotes the set of states

• M denotes the variables in the memory. This can have a possibility of
being infinite

• Φ denotes the set of partial functions φ that map an input and memory
variable to an output and a change on the memory variable. The set
φ: Σ × M −→ Γ × M

• F in the next state transition function, F : Q × φ −→ Q

• q0 is the initial state and m0 in the initial memory of the machine.

2.1.1 Transition Function

The transition functions allow the agents to change the state in which they
are in, modifying their behaviour accordingly. These would require as inputs
their current state s1, current memory value m1, and the possible arrival
of a message that the agent is able to read, t1. Depending on these three
values the agent can then change to another state s2, updates the memory to
m2 and optionally sends a message, t2. Figure 8 depicts how the transition
function works within the agent.

Some of the transition functions may not depend on the incoming mes-
sage. Thus the message would then be represented as:

Message = {∅, < data >} (2)
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Figure 2: X-machine agent

These agent transition functions may be expressed in terms of stochas-
tic rules, thus allowing the multi-agent systems to be termed as stochastic
systems.

2.1.2 Memory and States

The difference between the internal set of states and the internal memory set
allows for added flexibility when modelling systems. There can be agents
with one internal state and all the complexity defined in the memory or
equivalently, there could be agents with a trivial memory with the com-
plexity then bound up in a large state space. There are good examples
of choosing an appropriate balance between these two as this enables the
complexity of the models to be better managed.
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3 Design Decisions

This chapter describes the implementation issues surrounding the require-
ments/ specifications needed to build models of systems biology. These
issues include formally specifying agents, transforming the model’s speci-
fication into a simulation and the parallel processing issues of running a
simulation on high performance parallel computers.

3.1 Feature Identification

The requirements document should highlight the following issues for building
high-fidelity, high-resolution agent-based models as described by Pryor et al.
1998 [14]:

• Identify actors.

• Develop a set of operations that the actors perform.

• Define the applicable operations in a logical sequence.

• Identify and quantify the resources on-hand and remotely accessible
to the actors.

3.2 System Description

Specifying software behaviour have traditionally involved finite state ma-
chines which allow modelling a system in terms of its inputs and outputs.
More abstract system descriptions include UML which has already been
proposed as a way to design agent-based models [4, 3, 11, 20] but these
techniques lack precise descriptions needed for generating simulation code
and for testing. Testing a system specified as a finite state machine makes
it easier for the behaviour to be expressed as a graph and allow traversals of
all possible and impossible executions of the system 2. Conventional state
machines describe the state-dependent behaviour of a system in terms of
its inputs, but this fails to include the effect of data. X-machines are an
extension to conventional state machines that include the manipulation of
memory as part of the system behaviour, and thus are a suitable way to
specify agents. The advantages of this approach have been highlighted in
Section 2.1. Describing a system would thus include the following individual
stages for creating a model:

• Identifying the system functions

• Identify the states which impose some order of function execution

• Identify the input messages and output messages

• For each state identify the memory as the set of variables that are
accessed by outgoing and incoming transition functions

2This is similar to branch traversal testing.
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3.3 Biology Example: Keratinocyte colony formation

Normal human keratinocyte (NHK) is a cell type that constitutes over 80%
of the outermost layer of the skin or the epidermis [7]. The epidermis is a
fast renewing tissue which forms a protective barrier between our internal
organs and the outside world. Understanding how cells proliferate and self-
organise into layers of skin tissue is a very important research topic. Such
understanding promotes the development of methods to artificially produce
reconstructed human skin for patients with heavy skin loss for example
through chronic burns, wounds or skin disease. As part of the Epitheliome
project at the University of Sheffield, Sun and McMinn used the agent-based
modelling framework, FLAME, to develop an in-virtuo model of the be-
haviour of skin cells. The interaction of the software-agents in the in-virtuo
model described the NHK macroscopic morphogenesis in-vitro [15, 19]. The
initial set of rules implemented to govern the cellular (agents) behaviour
in-virtuo were based on well established areas of epidermal/dermal biology
literature. As the main purpose of the model was to enhance the understand-
ing of cell colony formation, many complex elements of the natural biology
have been abstracted away. In the agent based model of the keratinocyte
colony formation, each cell was represented by an individual agent. The
signalling process between cells is simulated in the model in terms of agents
communicating with each other by reading and writing to message lists.
The algorithm for the keratinocyte colony formation can be summarised as
follows:

1. Cells communicate with each other by exchanging information about
their types and locations

2. Cells act accordingly and go into or continue a cell cycle [18] which
includes several checkpoints

3. Cells divide depending on certain conditions (location, calcium con-
centration in the environment and number of contacts with other cells)

4. Cells differentiate depending on certain conditions (type, location and
calcium concentration in the environment)

5. Cells migrate depending on certain conditions (type, location and cal-
cium concentration in the environment)

6. A physical model controls the physical distribution of cells, making
sure that any two cells will not physically overlap

The sequence of operations described are meant to cover one single time-
step in the simulation. Every single time-step of the in-virtuo model repre-
sents a time-step of 30 minutes in reality. Following the method for creating
an X-machine model, the cell agent system functions can start to be identi-
fied:

• Signal (used to communicate cell location)
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• Cycle (cell cycle rules)

• Divide (Cell division or Mitosis)

• Differentiate (diff)

• Migrate

• Resolve location (used to ensure realistic cell locations)

The keratinocyte colony formation model, implemented by Sun et al [15]
and used in here to illustrate the use of FLAME, adopted a simple approach
to cell cycling alongside a simple physical model to resolve cell locations.
Moreover, the in-virtuo model did not involve any complex cell signalling
mechanisms and modelled each cell as a simple sphere, with constant size
and shape, on a virtual culture dish.

At every iteration of the in-virtuo model simulation, each cell (agent)
broadcasts its location to the message lists for all other cells to read. In the
keratinocyte colony formation model, there are four types of cells considered:
Stem cells (S), Transit Amplifying (TA) cells, Committed cells (comm) and
Corneocytes (corn). Depending on its type and position in the cell cycle,
each cell performs specific programmed rules of its cell cycle. Stem cells
are usually found in the centre of the colony. They are fairly static and
proliferate provided that there is space to do so. Similarly, TA cells also
proliferate as long as there is sufficient space. As a result, each stem and TA
cell follows a cell cycle whereby they divide after a pre-determined period
of time. A stem cell division (mitosis) produces two daughter stem cells,
and a TA cell division produces two daughter TA cells. If a cell is contact-
inhibited, that is, there is no sufficient space around to divide, it goes into
a special dormant state of the cell cycle referred to as G 0.

After executing the cell cycle rules, each cell then uses the differentiation
rules adopted in the model to decide whether to change to another cell type
(a process called differentiation). A stem cell can differentiate into a TA
cell, a TA cell can differentiate into a committed cell. Initially, stem cells
divide and cluster (Figure 3). When the stem cell cluster reaches a certain
size, the cells located on the cluster edge, start to differentiate into TA cells.
In practice this rule is coded by each stem cell scanning its vicinity through
interrogation of the message lists (Figure 4). If a cell (agent) cannot find
a certain number of fellow stem cells within a certain range d1, the cell
differentiates into a TA cell.

Moreover, following the differentiation of stem cells into TA cells, when
the TA cells become a distance d2 away from the stem cell epicentre of the
colony, they differentiate into committed cells (Figure 5). Stem and TA
cells that have been in G 0 for a certain period of time also differentiate into
committed cells (Figure 6). Finally a committed cell will loose its nucleus
and differentiate into a corneocyte after a further period of time.

Following the differentiation rules, each cell, depending on its type and
location, then execute the migration rule. Unlike stem cells, TA cells can
migrate around the culture plate, depending on the ambient levels of cal-
cium. Lastly, when a stem, TA or committed cell dies (for example, due
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Figure 3: Differentiation from stem cells to TA cells. Stem cells are blue,
TA cells are green.

Figure 4: Mechanism for stem to TA cell differentiation
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Figure 5: TA cells now dominate the edges of the colony. As the colony
gets bigger TA cells far away from the stem cell epicentre differentiate into
committed (dark green) cells.

Figure 6: Stem and TA cells that have been contact-inhibited for a certain
period of time differentiate into committed cells.
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to an increase of calcium level in the environment), the cell differentiates
into a corneocyte cell. Corneocytes are dead cells that do not proliferate,
differentiate or migrate, and are found on the top layers of the epidermis.

At the end of every iteration (time-step) of the simulation, the model’s
physical rules are executed to ensure that the cell locations are realistic.
In this example, the physical rules are executed by deploying an external
physical solver agent. The physical solver simply applies a force to over-
lapping cells to separate them. Skin cells self-organise into layers through
stratification. In the in-virtuo model, daughter cells are pushed up a layer
when there is no lateral space (Figure 7). The physical model is also built so
that different cells exert different forces. For example, while TA cells possess
higher motility and can migrate, stem cells, committed cells and corneocytes
bond strongly to themselves and the culture plate, which is why they remain
static.

Figure 7: Stratification

A pseudocode description of the in-virtuo model of the keratinocyte
colony formation can be summarised as follows [15]:

For each time-step
For each agent

Read state and position of neighbouring agents from message list
Update state and position as determined by internal rules and
external signals
Write new state and position to message list

End
End

Following the identification of the cell agent functions, the system states
that impose some order of function execution can start to be defined. This
is achieved by associating transition functions with a start state and an end
state (the start and finish state can be the same state), and are shown in
Table 1. In the keratinocyte model, a cell has many start states because
a simulation can start with many cells of different types (Stem, TA, Cor-
neocyte and Committed). A state transition diagram of the full in-virtuo
model of keratinocyte colony formation is presented in Figure 8. In addition
to ’signal’, ’cycle’, ’migrate’, ’divide’ and ’differentiate’ functions, a cell can
also ’not divide ’ and ’not diff ’.
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Each cell (agent) stores its spatial co-ordinates in its local memory, and
behaves according to programmed rules for movement, cell division and
differentiation.// The cell memory is defined thus,

• Cell memory:

• double x, y, z // location in 3D

• contacts // used to count cell contacts

and the cell messages are defined as,

• Messages:

• struct location { int cell type, double x,y,z}.

Start State Function End State

Stem signal, cycle, divide, Stem, Transit Amplifying
or differentiate or Corneocyte

Transit signal, cycle, divide, Transit Amplifying,
Amplifying (TA) differentiate or migrate Committed or Corneocyte

signal, Committed
Committed cycle or or

differentiate Corneocyte

Corneocyte signal or cycle Corneocyte

Table 1: Cell states in the Keratinocyte colony formation model

The next stage is to identify the input and output messages associated
with a function transition, see Table 2. Finally identifying the pre and post
memory of the transition functions, see Table 3, where try cycle, try divide,
migrate, Physical solver, and resolve locations are defined in Tables 4-8. The
keratinocyte colony formation defined in XMML is presented in Appendix
B.

Input Function Output

Signal location out

location in Cycle

Divide

location in Diff

Migrate

Resolve location

Table 2: Cell input and output messages
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Figure 8: States transition diagram
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Start State Mpre Input Function End State Mpost Output

stem 0 signal stem 1 location

ta 0 signal ta 1 location

comm 0 signal comm 1 location

corn 0 signal corn 1 location

stem 1 location try cycle stem 2

ta 1 location try cycle ta 2

comm 1 location try cycle comm 2

corn 1 location try cycle corn 2

stem 2 try divide stem 3

ta 2 try divide ta 3

stem 3 number of stem neighbours > max stem colony size diff ta 4

stem 3 z > 0 diff ta 4

stem 3 contact inhibited ticks > max to g0 contact inhibited ticks diff ta 4

ta 3 nearest stem cell > same distance diff corn 2

ta 3 contact inhibited ticks > max to g0 contact inhibited ticks diff comm 3

ta 3 number of corn neighbours > some value diff corn 2

comm 2 dead ticks > max dead ticks diff corn 2

comm 2 number of corn neighbours > some value diff corn 2

ta 3 not diff ta 4

comm 2 not diff comm 3

stem 3 not diff stem 4

ta 4 migrate ta 5 new location

comm 3 not migrate comm 4 new location

corn 2 not migrate corn 3 new location

stem 4 not migrate stem 5 new location

ta 5 res location resolved location ta 0

comm 4 res location resolved location comm 0

corn 3 res location resolved location corn 0

stem 5 res location resolved location stem 0

Table 3: Cell memory pre and post state transitions

M
ay

8,
2008

P
age

18/58



E
p
ith

eliom
e

P
ro

ject
R

ep
ort

Start Mpre Input Function End Mpost Output
State State

contacts = 0;
Start init counts 1 num stem neighbours = 0;

num corn neighbours = 0;

1 distance(x, y, z, location.x, .y, .z) <= force radius num stem neighbours + +;
and location cell contact stem 1 contacts + +;

location.cell type == STEM

1 distance(x, y, z, location.x, .y, .z) <= force radius num corn neighbours + +;
and location cell contact corn 1 contacts + +;

location.cell type == CORN

distance(x, y, z, location.x, .y, .z) <= force radius

1 and location.cell type != STEM location cell contact 1 contacts + +;
and location.cell type != CORN

1 distance(x, y, z, location.x, .y, .z) > force radius location no cell contact 1 contacts + +;

1 location == null count contacts finished 2

(calcium level == 0.1andcontacts <= 4) cycle + +;
2 or cycle End contact inhibited ticks = 0;

(calcium level == 1.3andcontacts <= 6)

(calcium level == 0.1andcontacts > 4)
2 or no cycle End contact inhibited ticks + +;

(calcium level == 1.3andcontacts > 6)

Table 4: Try Cycle
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Start Mpre Input Function End Mpost Output
State State

1 Cycle > 60 divide End cycle = random(0, 15); add cell(ta);

1 Cycle <= 60 no divide End cycle = random(0, 15); add cell(ta);

Table 5: Try divide
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Start migrate End x = x + mobility + cos(direction); y = y + mobility + sin(direction);

Table 6: Migrate
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State State

Phy sol 0 resolve locations Phy sol 1

Table 7: Physical solver
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State State

Start init locations 1 locations.init();

1 new location add new location 1 locations.add(location);

1 new location == null solve locations 2 call external solver();

2 locations.size > 0 send location 2 location = locations[0]; res location (location)

2 locations.size == 0 finish sending locations End

Table 8: resolve locations

M
ay

8,
2008

P
age

23/58



Epitheliome Project Report

For the X-machine model any state transition requires an incoming mes-
sage or the memory being in a required state. The memory state could
include a count for the number of messages read and stop after a certain
number. Except there could be the possibility of no incoming messages
and therefore never reach the limiting value. Alternatively, a memory value
could include an internal clock ticker, as in the case of the in-virtuo model of
keratinocyte colony formation, where the agent waits for a certain amount of
clock ticks before transitioning into different states. In such scenarios, there
should be a mechanism to advance the clock tick. For a message event ap-
proach: an incoming message could come from a central control agent that
knows that there are no more messages to be read. This could be achieved
by all agents that have finished sending a certain type of message, sending
a message to the control agent. The control agent has a list of all agents
that send the type of message and knows when they have all finished, then
sends a message to agents that read in that type of message to say that no
more messages are being sent.

3.4 Unified Modelling Framework

By creating a unified modelling framework other people can use their ex-
pertise to create their own models. The unified modelling framework should
also enable the parallel processing of a simulation independently from the
model and its modellers.

Abstraction layers are very important as a way of hiding implementa-
tion details of a particular set of functionalities. Discussions with the the
Rutherford Appleton Laboratory have produced the following three lay-
ered approach. First the model layer that modellers interact with and have
knowledge about. The perception at this level is of a collection of agents,
that run through operations in order, and communicate. The second layer,
the framework layer, is the engine of the simulation. It handles the reading
in of agent start states, allocates agents to processors, runs agent opera-
tions in order, and sends agent messages. The third and final layer is the
communication layer and handles agents receiving messages. Usually agents
only read a relevant subset of all the messages sent, depending on various
factors, and it is this layer that filters and subdivides the available messages.
A block diagram of this approach has been presented in Figure 9.

3.5 Handling Of Time

Computer simulations operate on two notions of time:

• The advancement of processing time

• The advancement of simulation time

The processing time is the program progress and simulation time depends
on program progress. For agent-based simulations processing time is the
processing of agents and the handling of communication. Simulation time
is advanced between periods of processing, for example when every agent is
updated and all communication has reached its destination.

May 8, 2008 Page 24/58



Epitheliome Project Report

-  A g e n t
-  A g e n t  o p e r a t i o n s
-  L o g i c a l  S e q u e n c e  o f  o p e r a t i o n s
-  C o m m u n i c a t i o n  n e t w o r k s  ( w h i c h  a g e n t s  c a n  r e a d  o t h e r  a g e n t s  m e s s a g e s )

-  S p r e a d  o f  a g e n t s  o n  p r o c e s s o r ( s )
-  C a l l i n g  o f  f u n c t i o n s  o n  a g e n t s  i n  o r d e r
-  A g e n t  m e s s a g e  t r a n s m i s s i o n
-  I npu t  and  ou tpu t  t o  f i l e s

-  A g e n t  m e s s a g e  d e l i v e r y  f i l t e r i n g

M o d e l  L a y e r

F r a m e w o r k  L a y e r

C o m m u n i c a t i o n  L a y e r

Figure 9: Layers of abstraction for the framework.

Deciding which agent to run and when to process/update it is a major
issue.

For some theoretical results it can make a major difference in the out-
come. The most dramatic example is the Game of Life where synchronous
updates create patterns and structures capable of computation, but under
an asynchronous scheme the model world quickly becomes lifeless. Another
example comes from game theory where synchronous turns of players can
evolve oscillation of states while asynchronous player turns quickly find a
stable equilibrium [10].

Particularly for communicating agents is when communication completes,
which is when messages are sent when are they available to be received. This
can involve two kinds of update strategies - synchronous, at the same time,
and asynchronous, not at the same time. These updates can be defined in
the context of communication as follows:

• Synchronous:

• Communication only completes after every agent is updated once.

• Order of agent updates does not matter.

• Asynchronous:

• Communication completes after every agent is updated.

• Order of agent updates matters.
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3.5.1 Communication

Communication is very important when dealing with parallel processing of
simulations. It can act as a major bottleneck that can slow down simula-
tion times. Discussions with partners at Rutherford Appleton Laboratories
suggested that it is the starting up and ending of communication between
processors that is the major factor and not the amount of data being sent
[12]. This suggests that the least amount of communication synchronisation
points, or completes, the better. It also implies that it is better to send as
much information as possible in a single communication than to send each
piece of communication individually.

Deciding which computer platform to be used should not affect the re-
sults of a simulation. Processing and communication time should affect
simulation time and not in the other direction. So the framework should
be designed to be platform independent. This becomes important when
handling agent updating and communication. In a simulation, agent com-
munication should not be affected by the number of processors used nor
the physical networks connecting them 3. Summarising the points to be
considered:

It should not matter that an agent is not on the same computing

node. This requires all agent interaction is achieved via contactless com-
munication via messages. Contactless here refers to the inability to directly
poll or access another agents memory values, as this is not possible if the
agents are on a different computing nodes.

Any communication sent should be available for when it is needed

to be read. This means operations that receive messages can only be run
when messages have arrived. The physical bandwidth of the communication
hardware used to run a simulation will not affect the results.

3.5.2 Updating Agents

There are two ways an agent can be updated/processed. Updating can be
based on processing time information, called incremental based, or rely on
incoming communication, called event based. Though incremental based
self updating can include incoming communication, and event based could
include an incoming timed event.

Because agents only communicate via messages, they can be updated at
any time if any messages they need to read have arrived. So the only thing
affecting the updating of agents is the communication dependencies, i.e. we
can’t update this agent until other agents have been updated. By using the
state machine description to calculate the possible order of the functions,
which shall be called internal dependencies, and the communication input
and output between different functions, the communication dependencies,
a function dependence graph can be created. A paper [17] from 2002 uses

3The speed of the cables or buses used for connection between processors responsible
for carrying agent communication
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this dependence analysis technique to aid automated test case generation,
which could also aid testing of models in the framework.

Figure 10 shows a dependency graph for the in-virtuo model of ker-
atinocyte colony formation. The dependency graph shows all the actions
that can happen in one time-step (iteration), i.e. after an event happens
and waiting for the next one. From the communication dependencies de-
fined in the graph, one can add stages where communication must complete
before the corresponding function requiring the input is processed. One can
also assert that an agent can be updated until it is waiting for incoming
communication and can only be updated again till after the corresponding
communication completes. The graph also shows what agents need updated
when, and depending what state they are in, the function that is executed.

3.6 Communication Networks

Parallel computation is easily handled when agents are communicating via
messages. The use of the idea of agent-agent and agent-environment inter-
actions is an abstraction above the fundamentals. The only availability for
agents communication are sending messages and receiving messages.

3.6.1 Agent-Environment Interaction

The idea of an ‘environment’ can be something that holds information that
could possibly change, which can be embodied as an agent itself. Examples
of environments in agent-based models can be:

• Land that grows crops (the ground cover environment).

• Chemical signals (the chemical environment).

• Newspaper business sections (the economic environment).

FLAME has been used for modelling biological systems, especially bi-
ological cells, where external solvers are needed to solve chemical diffusion
and the physical movement of the cells. It is functions in these ‘environment’
agents that can be used to call external solvers, and pass back information
back to the cells.

3.6.2 Agent-Agent Interaction

Agent-agent interaction is when one agent sends a message and another reads
it. The agent reading messages can filter messages depending on specified
variables. Examples of which include:

• Its ‘id’ (direct interaction).

• Its ‘region’ (local area interaction).

Agents do not need to hold a list of pointers to other agents to represent
their local neighbourhood. This can be achieved by the following ways:

• Agents having the same region number.
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Figure 10: Dependence graph
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• Agents having a trade group number.

• Agents having a location and filtering messages via a distance metric.

Few instances, where the buyer has a preferred seller, such information
would be held within the agent memory. Networks in agent based models
are fully defined with agents, not a top down global view.

3.7 Simulation Output and Data Storage

Data storage is an important issue. Currently data is being held in XML
format for ease of access but this presents problems with increasingly large
file sizes. Other options to resolve this issue are being considered:

• Common Data Format (CDF) for the storage and manipulation of
multi-dimensional data sets

• Database which would also easier extraction of specific data

• XML alternatives: YAML, JSON, SDL

Discussions and experiments with these and other file formats are cur-
rently being performed by Sheffield and Rutherford Appleton Laboratories.
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4 Framework Implementation

Initial work on implementation had already been undertaken by Simon
Coakley as part of his Ph.D. This involved creating a parser program that
takes a model description as an input and produces a runnable simulation
program, either in serial or parallel. Model descriptions are written in a file
format called XMML which is a specific tag defined XML file. The XML
format provides a structure for data that computers and humans can un-
derstand. A model description file allows metadata about a model to be
used to direct source code creation (via a parser program), especially for
parallel code that modellers do not need to encounter. It can also be used
to direct testing efforts and produce diagrams of a model that aid in its
understanding.

4.1 Xparser

The Xparser is the name of the program that reads XMML model files and
produces simulation program code, see Figure 11. Additional features that
have been added since the project started include:

• Function dependencies – agent functions can now be ordered in such a
way that the simulation program can execute them at the best possible
moment (which is calculated), and allows for future use of threading
techniques.

• Template engine – the logic behind the generated simulation code has
been transfered to template files so that collaboration between partners
is easier.

• Dynamic arrays for agent memory – the ability to have dynamic sized
arrays in agent memory has been added (although movement of agents
on a parallel machine used for load balancing has yet to be imple-
mented).

The Xparser also has an XML reader to read the XMML model descrip-
tions, and also generates graphs of the function dependencies for analysis.

x p a r s e r
X M M L

f i le
S i m u l a t i o n s

Figure 11: Xparser usage

The Xparser is completely written in C with the use of standard libraries
only. This was so that the program could be deployed on any platform (with
a C compiler) simply and easily. Because most of the logic is held in the
simulation template files it is viable to create a program in any language or
use additional libraries that would do the same job as the Xparser.
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4.1.1 Process Sequence

Agent functionality is defined by its functions. Functions change the agent
state and drive a simulation forward. The sequence that these functions are
run is determined by their dependency on each other, defined in the model
XMML. Dependencies are either communication, dependent on messages,
or internal, dependent on agent internal memory.

It is possible to construct a dependency graph (a directed acyclic graph)
to show the sequence of events that happen in a simulation. Whenever a
communication dependency occurs, in parallel, this requires a synchronisa-
tion block between the nodes so that messages arrive in time to meet the
dependency. These synchronisation blocks are a major time bottle neck and
so the fewer there are the more efficient the simulation. By traversing a
dependency graph it is possible to calculate the most efficient time to run
functions and where best to place synchronisation blocks.

Creating the function dependency graph currently uses a simple algo-
rithm. It finds functions with no dependencies on it, assigns them a layer,
removes them from the graph, and reruns the algorithm.

Figure 12 shows eight functions with dependencies. All are communica-
tion (denoted with a ‘C’) except the dependency of Function 2 on Function
5 which is internal (denoted with an ‘I’). Because internal dependencies do
not need a communication synchronisation block we can organise the syn-
chronisation blocks in such a way that we need the least amount of them.
An example of this strategy is the organisation of the functions from Figure
12 into layers separated by synchronisation blocks in Figure 13.

4.2 Framework Communication

The usual attribute that separates agent-based models from other modelling
techniques (like differential equations) is the use of space. Agents have a
location attribute that places them in space in relation to other agents. To
create new results from this added dimension of space, communication is
usually restricted to a distance metric, so that information is kept localised.
This knowledge can be used to direct efficient communication in a model
implementation.

Currently to efficiently handle messages with respect to localised com-
munication: The current implementation of the framework is based around
the idea of space as a Cartesian scale in 1, 2 or 3 dimensions, with:

• All agents defined with a Cartesian location

• All messages are defined with originating Cartesian location and range

• Agent space is partitioned along Cartesian lines

In this way when a message is sent by an agent, the message can be de-
fined as originating from the agent location and can only be read by agents
with location that is defined within the message range. To aid efficiency mes-
sages are only sent to partitions in agent space that include agents within
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Figure 12: Communication dependencies between functions
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Figure 13: Syncing communication dependencies as synchronisation layers
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the message range. After discussions with members of the Rutherford Ap-
pleton Laboratories about parallel communication in HPCs the filtering of
messages that are to be sent to different nodes is not required. Firstly that
filtering of messages is done twice, when messages are sent between nodes,
and when agents try and read incoming messages. Secondly that the filter-
ing of messages before they are sent between nodes is unnecessary. This is
because the time cost of sending messages between nodes is more weighted
on the opening and closing of communication and less on the actual amount
of data that is sent [12], this iterates the importance of keeping communica-
tion synchronisation blocks to a minimum. Therefore it is more efficient to
send all out going communication to all nodes. This then shifts all efficiency
efforts onto the filtering of messages for agents to read. This strategy is
mentioned in Section 3.4.

Also in efforts to make the framework more generic the idea of space
should not be restricted by a Cartesian scale, or in fact any distance scale.

4.3 X-Machine Agent Markup Modelling Language (XMML)

A description language for agent-based simulations, XMML has been pre-
sented here. XMML is orientated towards representing agent-based mod-
els as formalised abstract state machines, particularly communicating X-
machines. The motivation was to provide a formalised framework to en-
hance creating and testing of agent-based models and also provide innate
parallel processing capabilities.

4.3.1 Features of XMML

There are a number of factors which make XMML unique to achieve its
research purposes. A few have been listed below:

• XMML is not restricted by research area.

• It is not restricted by any grid or location based structure.

• Communication is not restricted between agents, but mechanisms are
available to efficiently filter incoming messages.

• Agents are updated at the most efficient time and in parallel (if avail-
able)

XMML is meant to aid agent-based modellers in developing more for-
malised models that are easier to create, test, share, and be parallel pro-
cessable without additional work. The definition of the model description
language here does not specify how to parse the model description into a
simulation program but defines what is required and how the simulation is
advanced.

4.3.2 Data

Variables represent the data that is possessed by the agent in their memory
and the messages they send or receive. While executing a simulation pro-
gram the details of this data needs to be known in advance. The advantage
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of this approach are that data structures and algorithms that handle data,
especially in parallel, can be automatically generated:

• Creating data structures for agents and messages

• Creating functions that handle input and output to files

• Creating functions that access agent memory

• Creating functions that interact with messages

• Creating parallel algorithms that handle data between nodes

Variables contain a data type and a name. Data types are used to assign
storage for the variable and define the type of data that will be held in
that location. Variable names are used to reference and alter the data if
needed. The following XML represents a variable of type float and named
temperature.

<var>

<type>float</type>

<name>temperature</name>

</var>

4.3.3 C Language

The current XMML to simulation code parser is written in the C program-
ming language, therefore allowing C data types to be used. Examples of
these have been given in Table 9.

Type Description Usual Byte Size Example Usage

int Integer number 2 bytes int count;
count = 5;

float A single-precision floating 4 bytes float temp;
point value temp = 6.2;

double A double-precision floating 8 bytes double sun temp;
point value sun temp =

13600000.0;

char Character 1 byte char letter;
letter= ‘a’;

Table 9: C fundamental data types.

4.3.4 Data Structures

To facilitate more structured data representation, new custom data types
can also be created. These custom data types can allow C data types as
well, and they can be referred to by their own user defined names. Table
10 gives an example of a custom data type called Chemical Element which
holds an ‘Atomic number ’ of type int and a ‘concentration’ of type double.
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<datatype>
<name>Chemical Element </name>
<desc>Used to hold a chemical element information</desc>
<var><type>int</type><name>atomic number </name></var>
<var><type>double</type><name>concentration</name></var>
</datatype>

Table 10: Example of the Chemical Element data type.

The <desc> </desc> tags can be used to allows users to describe the
data type which can later be extracted to be used for description in the
documentation. These custom data types can now be used in the same way
as the C data types.

4.3.5 Array

Variables can also be defined as a list which can also be represented as an
array. The array can either be static, with predefined size, or dynamic,
allowing its size to change. To define a static array, use the C syntax which
is to place square brackets after the variable name that contains the array
size. So for a list of six variables of type float called reactants, the definition
would be (Table 11):

<var><type>float</type><name>reactants[6]</name></var>

Table 11: Defining an array of predefined size.

Dynamic arrays have their own special data type provided by the XMML.
For any data type name just add ‘ array’ at the end. Therefore to change
the static array above to a dynamic array, take away the square brackets
and size and add ‘ array’ to the data type name (Table 12):

<var><type>float array </type><name>reactants</name></var>

Table 12: Defining a dynamic array.

4.3.6 XMML Components

XMML components are the representation of how models are described in
its specification. The description comprises of the agents involved, the agent
characteristics and the messages being used to communicate among the
agents.

4.3.7 Agents

Every agent is a X-machine. This depicts that the agent would thus contain
a set of memory variables which it can update during its functions. The
agent would also have a set of functions it can perform. The actual function
definition is not part of XMML component and is defined separately in a C
file. Table 13 gives an example of a firm agent.
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<! −− ∗ ∗ ∗ ∗ ∗ ∗∗ X-machine Agent - Cell ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −− >

<xmachine>
<name>Cell</name>
<! −−−−−−−−−Variables− −−−−−−−−−−− >

<! −− All variables used by Cell are declared
here to allocate them in memory −− >

<memory>

<var><type>int</type><name>id</name></var>
<var><type>double</type><name>motility</name></var>
</memory>

<! −−−−−−−−−−− Defining functions −−−−−−− >

<functions>
<function><name>cycle</name></function>

<function><name>migrate</name></function>

</functions>
</xmachine>

Table 13: Example of a Cell Agent.

<messages>
<! −−−Message for neighbouring cells− −−−− >

<message>
<name>location</name>
<note>This message lets the cells know about the location of the cell
sending the message.</note>
<var><type>int</type><name>cell id</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>
</messages>

Table 14: Example of describing messages.

4.3.8 Messages

Messages are used to communicate between the agents. All messages are
enclosed in the <messages> </messages> tag and every message structure
is defined separately. An example has been shown in Table 14.
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5 Model Creation

5.1 Data structures

From the definitions in model XMML data structures can be created for
agent memory and message memory.

Agent and message memory is made up of variables of certain data types.
These can be:

• C fundamental data types - int, float, double, char (Table 9).

• Abstract data types made up of more than one C data type.

• Static arrays of C data types and abstract data types.

• Dynamic arrays of C data types and abstract data types.

Dynamic arrays are a built-in feature of the framework (for sending messages
in parallel the size of the array is needed). For any data type just add ‘ array’
to the end, and access it via the following functions:

• datatype array * my array = init datatype array();

For initialising the array.

• add datatype(my array, value);

For adding an element to the array.

• remove datatype(my array, index);

For removing element at the specified index.

• my array->size;

for returning the length of the array.

• free datatype array(my array);

For freeing the array.

5.2 Definition of XMML tags

The model description is given in the XML file using XMML tags which have
been described previously. These tags are used by the xparser to recognise
the agent memory, the sort of variables being used and the functions they
can perform.

5.3 Handling Variables in Agent Memory

The xparser offers a few functions which can be used to access the variables
in the agent memory.

• set variablename(value)

The set function can be called with in the agent function to change the
value of the variable in the memory. The following brackets contain the
value to be replaced with.
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• x=get variablename()

The get function can be called within the agent function and gets the value
of the variable wanted and saves it to the local x value.

5.4 Handling Messages

• add messagename message(var1, var2,...)

To add the message onto the message board. Var1, var2 symbolize the value
of the variables that the message carries.

• messagename message=get first messagename message()

The local variable gets the first message to traverse through the message.

• messagename message->var1

The above command allows you to get the value of var1 from the message.

• messagename message = get next messagename message(messagename message);

The above command allows the loop to move onto the next message on the
board to read through. This would be used with a while loop until it returns
a null.

5.5 Handling Dynamic Arrays

The framework allows dynamic arrays to be used within the memory of the
agent. This is useful when the agent needs to maintain a list of a continually
growing nature of variables.

• int array * Agents = init int array()

The above command initializes the dynamic array.

• xmachine memory agentname * xmemory = current xmachine->xmachine agentname;

To access the memory the xmemory pointer needs to be used with the current
xmachine to point to the xmachine being accessed. The pointer would be of
the type of the agent being accessed.

• reset int array(xmemory->dynamicvariablename);

When accessing the dynamic variable array we can use the reset to reset the
array.

• add int(xmemory->dynamicvariablename, messagename message->var1);

To add to the dynamic array list use the above command with the name of
the array given first and the value after the comma.

• xmemory->dynamicvariablename->array[value]

Values in the dynamic array can be accessed similar to the way elements in
an array would be accessed.
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• xmemory->dynamicvariablename->size

The size can be used to return the value of the size of the array. This would
be changing continually as it is not fixed.

• free int array(agents);

To free the list of the agents used.

5.6 Outputs Produced by the Xparser

The Xparser produces simulation source code files, a compilation script,
and a documentation options file. Also produced are two graphs that show
function dependencies (see Figure 14 for example) and function order with
communication layers (see Figure 15 for an example).

5.6.1 Dotty graphs

The communication between agents takes place between agent functions. In
other words, one agent function sends a message, and another agent function
reads the message. The dotty graphs illustrate the order of agent functions
(i.e. creating a dependency graph from the function dependencies). Figure
14 is an example of the output produced. When one function depends on a
message sent from another function this is called a communication function
dependency. On the other hand, when one function depends on the outcome
of another functions within the same agent, this is called an internal function
dependency.

5.6.2 SVG graphs

The svg files, produced after compilation with the xparser, allow a clear
understanding on how the functions will be ordered during execution. Figure
15 depicts the output of the svg files. Red lines depict a synchronisation
point, at which point the functions prior to it would have finished executing
and sent out messages which the later functions can then read and proceed.

This figure also depicts how the functions will be distributed in a parallel
manner. more than one function in the layer can be run on more nodes and
all information could be brought together at the synchronisation point.

5.6.3 Results and Conclusions

The keratinocyte colony formation model provides a test bed for:

• Ways to design models

• Function dependencies

• Ways to implement models

• Cluster internal functions

• Ways to run models efficiently
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Figure 14: Function dependency graph of keratinocyte colony formation
model
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Figure 15: Communication synchronisation layers of keratinocyte model

Running models efficiently includes calculating when best to run functions
and where to place communication synchronisation points between func-
tions. Figure 15 lists the functions on rows with communication points as a
red line(s). This is the order the functions will be run in with communication
handled at the red lines. The main efficiency to be gained is to have as few
amount of communication points as possible, as this is the main bottle neck
in parallel (the starting up of communication between nodes). As part of
handling messages efficiently the message board will automatically organise
messages in relation to the filters agents use to read messages, for example
with a distance metric.
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5.7 Links to External Solvers: COPASI Example

5.7.1 External Solvers Integration

The ability to link FLAME to external solvers is very beneficial for several
reasons:

• It makes it possible to use existing resources and tools to simulate or
solve certain model aspects such as differential equations

• It facilitates and accelerates the process of building models and allows
researchers to focus on application specific modeling issues

• It helps bringing together people from different modeling backgrounds
and encourages model reuse and communication

5.7.2 COPASI

As a starter, the COmplex PAthway SImulator software application (CO-
PASI) [9] was chosen to be interfaced with FLAME. COPASI is a software
application used for simulating and analyzing biochemical networks. CO-
PASI is a free software for non-commercial use. Moreover, COPASI provides
alot of useful functionalities such as stochastic and deterministic time course
simulation, steady state analysis, metabolic control analysis and optimisa-
tion of arbitrary objective functions. COPASI includes a graphical user in-
terface for building and simulating biochemical models and it also provides
a command line version for batch processing. One of COPASI attractions is
that it can import and export SBML (Systems Biology Markup Language).
COPASI can also export the ODE system it automatically generates from
the chemical reactions and the global quantities defined by the user to C
source code.

5.7.3 Interfacing FLAME and COPASI

FLAME is interfaced with COPASI as an external solver. Some potential
usage for such interfacing is the modeling (time course simulation) of intra-
cellular biochemical reactions and signalling pathways (e.g. TGFβ signalling
pathway) which can be used to regulate the behaviour of the cell agents.

When the use of COPASI is required, the modeler need to define within
the < environment > tag (in the xml file defining the model) the data
structure copasi data which should contain the name (string of characters)
and the concentration (real number) of a metabolite. This is illustrated in
Appendix C. The initialisation file provided by the user should then look
something like the xml file presented in Appendix D.

May 8, 2008 Page 43/58



Epitheliome Project Report

Interfacing FLAME with COPASI is realised by providing a set of utility
functions that constitutes a COPASI-Interfacing Toolbox.

The Toolbox Content:

• CopasiModelTemplate.tmpl:

A basic and empty COPASI model (.cps) which is used to create a
COPASI model based on the user defined data structure copasi data

(In the xmml model definition file). The COPASI model is then popu-
lated using the corresponding values (metabolites names and concen-
trations) defined in the initilisation file (e.g. Appendinx D).

• CopasiFunctions.c:

Contains two Functions:
initialise Copasi Model and update Copasi Model.
The function update Copasi Model is called at every iteration of
the model simulation to update the variables (metabolites names and
concentrations) in the COPASI model based on the current values of
an agent memory. The COPASI model is then executed (Time course
simulation task), and the new metabolites’ concentrations stored in an
automatically defined and formated output report are used to modify
the agents memory correspondingly

• Initialise copasi model.c:

An executable file (once the codes generated by the parser are com-
piled) which should be called before the main executable (main.exe)
which simulates the model for a certain user-defined number of itera-
tions.
Initialise copasi model.c calls the function initialise Copasi Model

and uses the template CopasiModelTemplate.tmpl to create the
COPASI model

In the file Functions.c, provided by the modeller to define the agents
behaviour, the modeller also needs to define the following variables:

• A String defining the name of the COPASI model file:
e.g. copasiModel = ”TGFBeta.cps”;

• A String defining the name of the COPASI model:
e.g. copasiModelName = ”TGFBeta”;

• A String defining the name of the output report file:
e.g. reportFile = ”CopasiModel.txt”;

• A String defining the name of the output report:
e.g. reportName = ”Flame Report”;

• A String defining the desired rate law interpration method:
rateLawInterpretation = ”stochastic” or ”deterministic”;

• A String defining the quantity unit:
quantityUnit = ”#”; The default value is ”mmol”
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• A String defining the time unit:
timeUnit = ”min” or ”s” or ”h”;

• An Integer defining the duration of the time course simulation:
e.g. duration = 30;

• An integer defining the number of intervals that divides the duration
of the time course simulation:
e.g. nbofIntervals = 100;

Unless loading an existing COPASI model with defined reactions, after
calling the executable Initialise copasi model.exe, the user need to open the
COPASI model (.cps file) defined by the string copasiModel using the CO-
PASI GUI and set the reactions needed for the time course simulation of the
defined metabolites. The main executable main.exe can then be called to
simulate the model for a certain number of iterations. The results (memory
value for the agents memory, including the COPASI metabolites) will then
be written to xml files at every iteration. The results achieved at the 10th

iteration, for example, are shown in Appendix E.
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A XMML Schema

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="xmachine_agent_model">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="author" type="xs:string"/>

<xs:element name="date" type="xs:string"/>

<xs:element name="notes" type="xs:string"/>

<xs:element name="environment" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="constants" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="var" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="type" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="functions" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="file" type="xs:string" minOccurs="1">

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="datatypes" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="datatype" minOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>
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<xs:element name="desc" type="xs:string"/>

<xs:element name="var" minOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="type" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="xmachine" minOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="memory">

<xs:complexType>

<xs:sequence>

<xs:element name="var" minOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="type" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="functions" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="function" minOccurs="1">
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<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="depends" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="type" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="messages">

<xs:complexType>

<xs:sequence>

<xs:element name="message" minOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="var" minOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="type" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
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<xs:element name="iteration_end_code" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="code" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
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B Keratinocyte Colony Formation Model

<?xml version="1.0" ?>

<xmachine_agent_model>

<name>Keratinocyte colony model</name>

<author>Phil McMinn</author>

<!--*****Environment values and functions *******-->

<environment>

<var><type>double</type><name>calcium_level</name></var>

<var><type>double</type><name>substrate_width</name></var>

<functions><file>functions.c</file></functions>

</environment>

<!--******* X-machine Agent - Keratinocyte ******-->

<xmachine>

<name>keratinocyte</name>

<!-- Variables -->

<!-- All variables used by Firm are declared here

to allocate them in memory -->

<memory>

<var><type>int</type><name>id</name></var>

<var><type>int</type><name>type</name></var>

<var><type>double</type><name>x</name></var>

<var><type>double</type><name>y</name></var>

<var><type>double</type><name>z</name></var>

<var><type>double</type><name>force_x</name></var>

<var><type>double</type><name>force_y</name></var>

<var><type>double</type><name>force_z</name></var>

<var><type>int</type><name>num_xy_bonds</name></var>

<var><type>int</type><name>num_z_bonds</name></var>

<var><type>int</type><name>num_stem_bonds</name></var>

<var><type>int</type><name>cycle</name></var>

<var><type>double</type><name>diff_noise_factor</name></var>

<var><type>int</type><name>dead_ticks</name></var>

<var><type>int</type><name>contact_inhibited_ticks</name></var>

<var><type>double</type><name>motility</name></var>

<var><type>double</type><name>dir</name></var>

<var><type>double</type><name>iradius</name></var>

</memory>

<!-- Defining functions -->

<functions>

<function>

<name>output_location_0</name>

</function>

<function>

<name>check_agent_id</name>

<depends><name>output_location_0</name><type>internal</type></depends>

</function>

<function>

<name>cycle</name>

<depends><name>check_agent_id</name><type>internal</type></depends>
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</function>

<function>

<name>differentiate</name>

<depends><name>cycle</name><type>internal</type></depends>

</function>

<function>

<name>migrate</name>

<depends><name>differentiate</name><type>internal</type></depends>

</function>

<function>

<name>output_location_1</name>

<depends><name>migrate</name><type>internal</type></depends>

</function>

<function>

<name>resolve_forces_1</name>

<depends><name>output_location_1</name><type>internal</type></depends>

</function>

</functions>

</xmachine>

<!--********* End of Agent - Keratinocyte *************-->

<!--** Messages being posted by the agents to communicate **-->

<messages>

<!-- Message for Cell location -->

<message>

<name>location</name>

<var><type>int</type><name>id</name></var>

<var><type>int</type><name>type</name></var>

<var><type>double</type><name>x</name></var>

<var><type>double</type><name>y</name></var>

<var><type>double</type><name>z</name></var>

<var><type>double</type><name>dir</name></var>

<var><type>double</type><name>motility</name></var>

<var><type>double</type><name>range</name></var>

<var><type>int</type><name>iteration</name></var>

</message>

</messages>

<!--**** End of Messages ******-->

</xmachine_agent_model>
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C COPASI data structure definition

<?xml version="1.0" ?>

<xmachine_agent_model>

<name>Keratinocyte colony model</name>

<author>Phil McMinn</author>

<!-- Modified by Salem Adra - 11/2007- -->

<environment>

<var><type>double</type><name>calcium_level</name></var>

<var><type>double</type><name>substrate_width</name></var>

<!--**********************COPASI DATA STRUCTURE***********-->

<datatypes>

<datatype>

<name>copasi_data</name>

<desc>Used by Cells to hold copasi data</desc>

<var><type>char_array</type><name>metabolite</name></var>

<var><type>double</type><name>concentration</name></var>

</datatype>

</datatypes>

<!--******************************************************-->

<functions><file>functions.c</file></functions>

</environment>

<xmachine>

<name>keratinocyte</name>

<memory>

<var><type>int</type><name>id</name></var>

<!--*******************Array of 3 copasi_data**********-->

<var><type>copasi_data</type><name>copasiData[3]</name></var>

<!--***************************************************-->

<var><type>int</type><name>type</name></var>

<var><type>double</type><name>x</name></var>

<var><type>double</type><name>y</name></var>

<var><type>double</type><name>z</name></var>

<var><type>double</type><name>force_x</name></var>

<var><type>double</type><name>force_y</name></var>

<var><type>double</type><name>force_z</name></var>

<var><type>int</type><name>num_xy_bonds</name></var>

<var><type>int</type><name>num_z_bonds</name></var>

<var><type>int</type><name>num_stem_bonds</name></var>

<var><type>double</type><name>motility</name></var>

<var><type>double</type><name>dir</name></var>

<var><type>double</type><name>iradius</name></var>

</memory>

<functions>

<function>

<name>output_location_0</name>

</function>
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<function>

<name>check_agent_id</name>

<depends><name>output_location_0</name><type>internal</type></depends>

</function>

<function>

<name>cycle</name>

<depends><name>check_agent_id</name><type>internal</type></depends>

</function>

<function>

<name>differentiate</name>

<depends><name>cycle</name><type>internal</type></depends>

</function>

<function>

<name>migrate</name>

<depends><name>differentiate</name><type>internal</type></depends>

</function>

<function>

<name>output_location_1</name>

<depends><name>migrate</name><type>internal</type></depends>

</function>

<function>

<name>resolve_forces</name>

<depends><name>output_location_1</name><type>internal</type></depends>

</function>

</functions>

</xmachine>

<messages>

<message>

<name>location</name>

<var><type>int</type><name>id</name></var>

<var><type>int</type><name>type</name></var>

<var><type>double</type><name>x</name></var>

<var><type>double</type><name>y</name></var>

<var><type>double</type><name>z</name></var>

<var><type>double</type><name>dir</name></var>

<var><type>double</type><name>motility</name></var>

<var><type>double</type><name>range</name></var>

<var><type>int</type><name>iteration</name></var>

</message>

</messages>

</xmachine_agent_model>
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D Initialisation of a model using COPASI

<states>

<environment>

<calcium_level>1.3</calcium_level>

<substrate_width>510.0</substrate_width>

</environment>

<itno>0</itno>

<xagent>

<name>keratinocyte</name>

<id>1</id>

<copasiData>{{Shc, 0.05}, {Ras, 0.08}, {Erk-PP, 0}}</copasiData>

<type>0</type>

<x>56</x>

<y>321</y>

<z>0</z>

<motility>1.2</motility>

<dir>2.3</dir>

<iradius>3.1</iradius>

</xagent>

<xagent>

<name>keratinocyte</name>

<id>2</id>

<copasiData>{{Shc, 0.03}, {Ras, 0.04}, {Erk-PP, 0}}</copasiData>

<type>0</type>

<x>56</x>

<y>321</y>

<z>0</z>

<motility>1.2</motility>

<dir>2.3</dir>

<iradius>3.1</iradius>

</xagent>

</states>
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E Results achieved at the 10th iteration for a model

using COPASI

<states>

<itno>10</itno>

<environment>

<calcium_level>1.300000</calcium_level>

<substrate_width>510.000000</substrate_width>

</environment>

<xagent>

<name>keratinocyte</name>

<id>1</id>

<copasiData>{{Shc, {0.009901}}, {Ras, {0.009901}}, {Erk-PP, {0.000099}}}</copasiData>

<type>0</type>

<x>444.000000</x>

<y>486.000000</y>

<z>0.000000</z>

<motility>1.200000</motility>

<dir>2.300000</dir>

<iradius>3.100000</iradius>

</xagent>

<xagent>

<name>keratinocyte</name>

<id>2</id>

<copasiData>{{Shc, {0.046244}}, {Ras, {0.076244}}, {Erk-PP, {0.003756}}}</copasiData>

<type>0</type>

<x>56.000000</x>

<y>321.000000</y>

<z>0.000000</z>

<motility>1.200000</motility>

<dir>2.300000</dir>

<iradius>3.100000</iradius>

</xagent>

</states>
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Glossary

HPC : High Performance Computer – parallel supercomputer or computer cluster.

Node : Any single computer connected to a network. Supercomputer clusters are
many up of many nodes.

UML : Unified Modelling Language – a standard notation and modelling tech-
nique for modelling software systems.

XML : Extensible Markup Language – a simple and very flexible text format de-
signed for information exchange that encodes data with meaningful structure
and semantics.
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