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Minimal Models for Intracellular Trafficking 
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Predictive Biophysical Models for Protein-
Mediated Membrane Processes at the Mesoscale 

http://www.seas.upenn.edu/~biophys/images/rtk.jpg�
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H0 :Intrinsic curvature 
k: Bending Modulus 
k: Gaussian Curvature Modulus 

Helfrich Free Energy 

H⇒1/2[1/R1+1/R2] 
K⇒1/R1 ×1/R2 

Nelson, Piran, Weinberg, 1987 

Mesoscale Elastic Model for Membranes 
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Elastic free energy including frame 
tension on a membrane patch 
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LOCAL CURVATURE INDUCER MODEL 

C0=0.1 nm-1; b=8 nm; κ=20 kBT 

McMahon, 2003, 2005 
Seifert, et. al.  2006; 
Weinstein, Radhakrishnan, 2006;  
Agrawal, Weinstein, Radhakrishnan, 2008 
  

Coarse-Grained Representation of Protein-
Membrane Interaction 
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Tubule diameter=20 nm; ∆Ebinding= -14 kBT 

Integral Membrane Proteins 
Membrane is attached to the protein at a fixed contact angle 
Goulian M, Bruinsma R, Pincus P (1993) 
Lubensky T (1997) 
Kim KS, Neu J, Oster G (1998) 
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Generalized Langevin Dynamics 
Helfrich Hamiltonian for fluid lipid membrane [Helfrich (1973) 
Z. Naturforsch 28c 693] 
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Mean curvature 
Gaussian curvature 

κ: bending rigidity κ : Gauss curvature modulus 0H : instantaneous mean curvature 
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: mobility term 

: thermal noise term 

Monge (linear) model  [Agrawal et al. (2008) Mol. Phys.] 
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Vertex shifts: 

Link flip: 
[Ramakrishnan et al. (2010) 
PRE 81 041922] 

Curvatures are calculated through coordinate transformation 
between global and local Darboux frame. One of the two 
moves is randomly selected and the energy change is 
calculated. 
 

Monte Carlo Simulations 
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Weinstein, Radhakrishnan, Mol Phys, 2006;  
Agrawal, Radhakrishnan, Mol Phys, 2008  

     Proteins perform a random walk on membrane 
surface with a membrane mediated force field 

Protein-Mediated Membrane Fluctuations 

Langevin Dynamics Monte Carlo 
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Membrane-Mediated Potential of Mean Force (PMF) 
between Proteins 
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 PMF is dictated by both energetic and entropic components 

 Energy: Epsin experience repulsion due to energetic 
component when brought close. 
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 Entropy: 

 Regions of non-zero H0 assume 
increased stiffness and hence reduced 
membrane fluctuations 

 The system can lower its free energy 
by localizing epsins on the membrane 

δ2E~ spring constant; φ=test function 

Need for Free Energy Calculations 
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Agrawal, Radhakrishnan, Mol Phys, 2008 



University of Pennsylvania Department of Bioengineering 

Free Energy Calculations via 
Thermodynamic Integration 

, ,

1 ln
N V T

F EQ
λλ β λ λ

∂ ∂ ∂  = − = ∂ ∂ ∂ 

( ) ( ) ( )2 22
0 0

0

( ) ( )
2i i i

N

F r z r z r
C

λκ λ∂  = Γ − ∇ − Γ + ∇ ∆ ∂  
∑

By choosing  λ = C0,  
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Free energy 
change  with 
spatial extent of  
the curvature 
function (s0,C0) 
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Entropy change is small (<5% of the 
Energy change)  but is of order kBT 

Agrawal, Radhakrishnan, PRE, 2009 
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Clathrin Coat Clathrin  

trimer trimer:AP-2=1:1 

Clathrin Cage  

27  (50nm) 

Vesicle Nucleation in Clathrin-Mediated 
Endocytosis 
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Clathrin Coat 

1st Shell 2nd Shell 

Epsin arrangement 

x y θj 

〈exp(i6θ(r))〉 

Bond-Orientational Patterning of Epsin on Clathrin 
Lattice Leads to a Mature Vesicle Formation 
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[Agrawal, Radhakrishnan, Plos Comput Biol, 2010] 

50 nm 

Synaptic vesicles 
in neuronal cells 

Jakobsson; 2008 

K
irs

ch
ha

us
en

 (2
00

0)
 

Area=Aa 

R 

s 

H0 

s 

κ=20 kBT 



University of Pennsylvania Department of Bioengineering 

Agrawal, Radhakrishnan, Plos Comput Biol, 2010 
Ramanan et al, Integrative Biology, 2011 

Receptor Trafficking: Bioenergetics of Clathrin Induced 
Membrane Vesiculation 

Weak hydrophobic interactions lead to self assembly of clathrin coat  
Epsin-Induced Curvature Stabilizes Mature Vesicular Intermediates 
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Experimental 

Jakobsson, J.; PNAS 2008, 6445. Agrawal, Radhakrishnan, Plos Comp Biol, 2010 

Our results highlight the unique and central role played by epsin in 
the process of vesicle nucleation during endocytosis 

Free Energy Considerations in Clathrin 
Induced Membrane Vesiculation 
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Ensemble of Epsin-Membrane 
CGMD Simulations; each 
replica with a unique lateral 
pressure  

CGMD gives curvature field 

Mesoscale MC model  
gives positions and frame 
tension (lateral pressure) 

Model for predicting 
protein partitioning 
and vesicle budding 
events under various 
conditions: 
different proteins, 
cytoskeletal tension, 
ECM stiffness 

Two-way multiscale coupling; epsin-
membrane simulations in will quantify:  

1.Curvature field 
2.Curvature induction by multiple epsins 
3.Local stress fields 

CG/CM Interface for 
Coupling CGMD: coarse-
grained molecular 
dynamics with CM: 
continuum Helfrich MC 
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