IMAG Theme 3

Top Down Mesoscale Simulations and Free Energy Calculations: Experimentally Validated (Minimal) Models for Receptor Trafficking and Nanocarrier Adhesion

Ravi Radhakrishnan (www.seas.upenn.edu/~biophys) Co-authors: P. Ayyaswamy (PI), D. M. Eckmann (PI) J. Liu (Postdoc), N. J. Agrawal (PhD Student) Collaborators: V. M. Muzykantov, T. Baumgart

Funding: NIH/NIBIB, NSF/CBET, NSF/MRSEC, NSF/NPACI

Physically Based Multiscale Models

Minimal Models for Intracellular Trafficking

Predictive Biophysical Models for Protein-Mediated Membrane Processes at the Mesoscale

Mesoscale Elastic Model for Membranes

Helfrich Free Energy Nelson, Piran, Weinberg, 1987

$$
f_{\rm c} = \frac{1}{2}k\left(H - H_0\right)^2 + \overline{k}K.
$$

 H_0 :Intrinsic curvature k: Bending Modulus **k: Gaussian Curvature Modulus**

$$
E = \int_{A}^{K} \frac{(H - H_0)^2 dA + \sigma (A - A_{\text{flat}})}{2}
$$

Elastic free energy including frame tension on a membrane patch

 $H \implies 1/2[1/R_1 + 1/R_2]$ $K\rightarrow 1/R_1 \times 1/R_2$

Hane:

2

Coarse-Grained Representation of Protein-Membrane Interaction *H*₀ =∑ $Ce^{e^{s(fbsa)}}$

Integral Membrane Proteins Membrane is attached to the protein at a fixed contact angle Goulian M, Bruinsma R, Pincus P (1993) Lubensky T (1997) Kim KS, Neu J, Oster G (1998)

LOCAL CURVATURE INDUCER MODEL

McMahon, 2003, 2005

Tubule diameter=20 nm; $\Delta E_{binding}$ = -14 k_BT

b nm C_0 =0.1 nm⁻¹; b=8 nm; κ =20 k_BT Seifert, et. al. 2006; Weinstein, Radhakrishnan, 2006; Agrawal, Weinstein, Radhakrishnan, 2008

$$
\frac{1}{\mathcal{S}} = \frac{1}{\sqrt{\frac{1}{\mathcal{S}}\mathcal{S}}}
$$

$$
H_0 = C_0 e^{-s^2/b^2}
$$

Generalized Langevin Dynamics

Helfrich Hamiltonian for fluid lipid membrane [Helfrich (1973) *Z. Naturforsch* **28c** 693]

$$
E = \int_{s}^{s} \left[\frac{\kappa}{2} (H - H_0)^2 + \overline{\kappa} K \right] dA
$$

\n $H = c_1 + c_2$
\n $H = c_1 c_2$
\n**Mean curvature**
\n**Gaussian curvature**

 κ : bending rigidity $\bar{\kappa}$: Gauss curvature modulus H_0 : instantaneous mean curvature

Monge (linear) model [Agrawal *et al.* (2008) *Mol. Phys.*]

$$
z = z(x, y) A_{ij} = A_{flat,ij} \left[1 + (\nabla z)^2 \right]^{\frac{1}{2}}
$$

\n
$$
H \approx z_{xx} + z_{yy} = \nabla^2 z
$$

\n
$$
E = \iint_R \left[\frac{\kappa}{2} (\nabla^2 z - H_0)^2 + \frac{\kappa}{4} H_0^2 (\nabla z)^2 \right] dxdy
$$

\n
$$
\frac{\partial z(r,t)}{\partial t} = -M \frac{\delta E}{\delta z} + \xi(r,t)
$$

\n^M: mobility term
\n^M: the final noise term
\n^M: the final noise term

Curvatures are calculated through coordinate transformation between global and local Darboux frame. One of the two moves is randomly selected and the energy change is calculated.

Protein-Mediated Membrane Fluctuations

Weinstein, Radhakrishnan, Mol Phys, 2006; Agrawal, Radhakrishnan, Mol Phys, 2008

 Proteins perform a random walk on membrane surface with a membrane mediated force field

Membrane-Mediated Potential of Mean Force (PMF) between Proteins

- **PMF** is dictated by both energetic and entropic components
- **Energy:** Epsin experience repulsion due to energetic component when brought close.

Entropy:

$$
\delta^2 E(\phi) = \iint_A \kappa (\nabla^2 \phi)^2 + \left(\frac{\kappa}{2} H_0^2 + \sigma\right) (\nabla \phi)^2 dxdy > 0
$$

 δ^2 E ~ spring constant; ϕ = test function

- Regions of non-zero H_0 assume increased stiffness and hence reduced membrane fluctuations
- **The system can lower its free energy** by localizing epsins on the membrane

University of Pennsylvania Department of Bioengineering

x 10-15 Agrawal, Radhakrishnan, Mol Phys, 2008

Free Energy Calculations via Thermodynamic Integration

Free energy change with spatial extent of the curvature

Entropy change is small (<5% of the Energy change) but is of order k_BT

Agrawal, Radhakrishnan, PRE, 2009

$$
\left(\frac{\partial F}{\partial \lambda}\right)_{N,V,T} = -\frac{1}{\beta} \frac{\partial}{\partial \lambda} \ln Q = \left\langle \frac{\partial E}{\partial \lambda} \right\rangle_{\lambda}
$$

By choosing $\lambda = C_0$,

$$
\frac{\partial F}{\partial C_0} = \left\langle \Gamma(r_0) \kappa \sum_N \left[-\left(\nabla^2 z_i - \lambda \Gamma(r_0)\right) + \frac{\lambda}{2} \left(\nabla z_i\right)^2 \right] \left(\Delta r_i\right)^2 \right\rangle
$$

$$
\Delta F = F(C_0) - F(0) = \int_0^{C_0} \frac{\partial F}{\partial C_0} dC_0
$$

Vesicle Nucleation in Clathrin-Mediated Endocytosis

Bond-Orientational Patterning of Epsin on Clathrin Lattice Leads to a Mature Vesicle Formation

[Agrawal, Radhakrishnan, Plos Comput Biol, 2010]

Receptor Trafficking: Bioenergetics of Clathrin Induced Membrane Vesiculation

Agrawal, Radhakrishnan, Plos Comput Biol, 2010 Ramanan et al, Integrative Biology, 2011

Weak hydrophobic interactions lead to self assembly of clathrin coat Epsin-Induced Curvature Stabilizes Mature Vesicular Intermediates

Calculated Experimental Free Energy Considerations in Clathrin Induced Membrane Vesiculation

Our results highlight the unique and central role played by epsin in the process of vesicle nucleation during endocytosis

Ensemble of Epsin-Membrane CGMD Simulations; each replica with a unique lateral pressure

CG/CM Interface for Coupling CGMD: coarse- grained molecular dynamics with CM: continuum Helfrich MC

CGMD gives curvature field

Mesoscale MC model gives positions and frame tension (lateral pressure)

Two-way multiscale coupling; epsinmembrane simulations in will quantify: 1.Curvature field 2.Curvature induction by multiple epsins 3.Local stress fields

Model for predicting protein partitioning and vesicle budding events under various conditions: different proteins, cytoskeletal tension, ECM stiffness

