Multiscale model of platelet tethering and adhesion: similarities with the leukocyte adhesion cascade

Cornell University

Weiwei Wang¹, John P. Lindsey II¹, Jonathan B. Freund³, Thomas G. Diacovo², <u>Michael R. King¹</u>

 Department of Biomedical Engineering, Cornell University
 Department of Pediatrics, Columbia University Medical Center, Irving Cancer Research Institute
 Departments of Mechanical Science & Engineering and Aerospace Engineering, University of Illinois at Urbana-Champaign

The adhesion cascade of circulating leukocytes

Mild inflammation in live mouse venule King et al., *Microcirculation* (2003) King et al., *Annals of BME* (2004) King et al., *Phys. Fluids* (2005) Lamkin-Kennard et al., *Biorheology* (2005)

mike.king@cornell.edu

Hemostasis

•Hemostasis :

a self defensive mechanism in response to blood vessel injuries to prevent excessive blood loss. It describes the physiological process of blood clotting at injured vessels

Multiscale Physics

Length Scale:

Here we consider the GPIb-vWF bonding which mediate initial tethering of platelets to the area of vessel injury.

Receptor-Ligand bond formation/breakage:

Using Monte Carlo method to determine each bond formation/breakage event.

$$\begin{split} P_{f} &= 1 - \exp(-k_{f}\Delta t) \\ P_{r} &= 1 - \exp(-k_{r}\Delta t) \\ k_{f} &= k_{f,2-D}^{0}v_{s}\exp(\sigma \mid x_{b} - l_{b} \mid \frac{\gamma - 0.5 \mid x_{b} - l_{b} \mid}{k_{b}T}) \\ k_{r} &= k_{r}^{0}\exp(\frac{\gamma F_{b}}{k_{B}T}) \\ \end{split}$$
 Bell Model

Parameter (unit)	Definition	Value	Reference	
l _b (nm)	Equilibrium GPIba-VWF bond length	128	[Singh 2006, Fox 1988]	
γ (nm)	Reactive compliance	0.71	[Arya 2002]	
$k_{f,2-D}^{0}$ (s ⁻² /µm)	Intrinsic cross-linking formation rate constant	0.05	Determined by a series of simulations	
k_r (s ⁻¹)	Intrinsic dissociation constant	5.47	[Arya 2005]	
σ (pN/nm)	Spring Constant	10	[Chtcheglova 2004]	

Single Platelet: Rolling

Alternative Molecular Kinetics

The proposed "catch bond", "slip bond" switch for the GPIbvWF is caused by shear/tether induced vWF conformation change. The resulted dissociation kinetics are:

Auton et al. argued that, there is a combination of NG (native, folded state) and IG (open, intermediate state) forms of vWF in the system. With the detailed description:

$$k_{r} = \frac{1}{1+\Phi} k_{N}(f) + \frac{\Phi}{1+\Phi} k_{I}(f), \quad \Phi = IG/NG$$

$$\Phi(f) = k_{NG \to IG}^{0} / k_{IG \to NG}^{0} * \exp(\frac{\gamma' f}{k_{B}T})$$

$$k_{N}(f) = k_{N,off}^{0} \exp(\frac{y_{N}f}{k_{B}T}) \qquad k_{I}(f) = k_{I,off}^{0} \exp(\frac{y_{I}f}{k_{B}T})$$

Parameter (unit)	Definition	Value	Reference
$k_{NG \rightarrow IG}^0 / k_{IG \rightarrow NG}^0$	unstressed equilibrium constant for NG – IG states	0.4	[Auton 2010]
γ' (nm)	force compliance for two states ratio	0.45	[Auton 2010]
$k_{N,off}^0$ (s ⁻¹)	intrinsic dissociation constant for NG state	4.9	[Auton 2010]
$k_{I,off}^0$ (s ⁻¹)	intrinsic dissociation constant for IG state	1.84	[Auton 2010]
y_N (nm)	force compliance of dissociation for NG state	-0.23	[Auton 2010]
y_I (nm)	force compliance of dissociation for IG state	0.039	[Auton 2010]

Slip bond kinetics are inconsistent with experiments

Experimental data from Coburn et al. Biophy.J. Vol 100 Jan 2011 304–312, using human platelet cells. Experiments added 6% ficol to increase viscosity.

Binary collisions between two platelets

Two Platelets: One adherent to the injury site and one freely flowing

In-vivo flow visualization

Digital analysis of platelet flow around a platelet-rich thrombus *in vivo*. (~3600 frames, 54 s real time) *Up:* cell trajectories color coded by velocity magnitude. *Down:* 2-D color map of velocity magnitude.

Deformable Red Cells

Conclusions

Platelet Adhesive Dynamics (multiscale hydrodynamics + molecular kinetics): –Flow characteristics of platelet shaped cells –Characterizing particle-particle collision phenomena –Model can differentiate between two different kinetic models

Vessel scale hydrodynamic calculations

-Platelet velocity drops upstream and downstream the thrombus -RBCs enhance platelet deposition onto the thrombus surface.

Thrombus self-stabilizing dynamics in vivo:

-Thrombus shifts towards low shear stress region

-Characterizing the flow pattern around a human-like thrombus in vivo

Funded by NIH Grant No. HL097971