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Motivation 
• Cardiovascular diseases (CVDs) are responsible for 40 percent of all 

deaths in the U.S. 
• Many CVDs involve arteriosclerosis, or hardening of the arteries due to 

structural changes in blood vessel walls.  
• Lack of understanding on the mechanisms that control structural and 

functional changes in blood vessel walls.  
 

Objectives 
 
• To develop a multi-scale predictive mechanobiology model of 

extracellular matrix (ECM) mechanics that integrates biomechanical 
integrity, biochemical composition stability, and microstructure of the 
ECM.  

• To better understand the underlying physics of arterial stiffness—and 
ultimately, CVDs. 
 



(massgeneral.org) 

• Arteries are large diameter vessels that move 
blood away from the heart to the body 

• Elastic to accommodate cardio-respiratory 
function and pulsatile blood flow 

• Three layers 

Media 
(elastic 
fibers, SMCs,  
collagen, 
proteoglycan) 

Adventitia 
(collagen, 
fibroblasts, 
nerves, 
capillaries) 

Intima 
(Endothelial cells, 
basal lamina) 

    Tunica intima 
    Tunica media 
    Tunica adventitia 

Structure of the arterial wall 



• Majority of the passive mechanical 
behavior is due to the collagen and elastin 

• Elastin is essential to provide the elasticity 
of dynamic tissues  

• Collagen fibers support the load in the stiff 
region 
 

Importance of elastin and collagen in the 
mechanics of arterial Wall 
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(Sherratt, Age, 2009) 

Elastin in ferret aorta 
Mechanically recoil 3×109 times 

over a 70-year life! 

Molecular Biology of the Cell, 2002, Alberts et al. 



Hierarchical ultrastructure within the ECM  

Tissue level Fiber level Molecular level 

Fiber 

Intra-fiber 
cross-link 

Molecule 

Inter-fiber 
cross-link 

•   Mechanical function of ECM at the tissue level is highly dependent on its 
structure (fiber distribution/orientation) and its biochemical composition 
(ECM content and cross-linking) 

Fiber-level 
mechanical function

(cross-linking)

Structural/histological 
information                   

(fiber content, distribution)

Tissue-level 
mechanical function
(normal vs. disease)

•  Fundamental mechanics perspective coupled with critical biophysical input  



(Kuhn and Grün, 1942) 

Material parameter:  
N – number of links within each chain 
Locking stretch of the chain; chain 
length between cross-links  

Statistical mechanics based 
constitutive model 
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Orthotropic hyperelasticity of elastin 

Material parameters:  a=1.8011, b=1.31, c=1.2, n=5.8×1015(1/mm3)  
(Zou and Zhang, Ann Biomed Eng, 2009) 
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Viscoelastic behavior of elastin 
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• The dependence of the rate of stress relaxation on the initial stress level   
is small at physiological load.  

• Mterial parameters fitted from one test can be used to simulate the stress 
relaxation behavior of elastin under different initial stress levels and 
provide reasonable predictions.  

n = 1.75×1016 (1/mm3)  
a = 1.53  
b = 1.44 
c = 1.3 
N= 1.6  
Ge = 0.89 
Go = 1.0 
Nd = 6 
Io= 2 

(Zou and Zhang, J Biomech Model Mechanobiology, 2011) 



Fiber distribution function 

Tissue-level stress-strain relationship 

Biochemical 
ECM content, 
cross-linking 

• Collagen and 
elastin assay 

• Histology 
study 

Experiment validation 
•   Provide validation of the model. 
•   Determine corresponding material parameters in the model. 

ECM content  

Cross-linking 
density 
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• Biaxial tensile 
testing 

• Confocal 
microscopy 



Obstruction Induced Pulmonary Vascular Remodeling 

• In collaboration with Boston’s Children’s 
Hospital 

(Chow et al., J Biomech Eng, accepted)  



Structural functional changes 
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(Chow et al., J Biomech Eng, accepted)  



Structural and Mechanical Changes in Elastin 
Degraded Arteries 

• Elastic solid  Translucent gel with size increase 
• Elastin decreases with longer digestion time 
• Size increases due to elastin degradation 

(Chow et al., J Biomech Model Mechanobiology, submitted) 
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(Chow et al., J Biomech Model Mechanobiology, submitted) 



Summary and Future Evolution 
• Coupled experimental-modeling approach 

– Fiber orientation information of elastin and collagen will be 
obtained using confocal microscopy and directly incorporated into 
the model. 

– Content and crosslinking density of elastin and collagen will be 
measured biochemically through biological assay. Corresponding 
material parameters in the model will be determined from fits to the 
biaxial-tensile testing data.  

– Establish relationship between biomechanical integrity, 
biochemical composition stability, and microstructure of the vessel 
wall.  

• Combine with animal models of vascular remodeling in 
CVDs and other diseases, this research approach has a 
great potential to unravel the underlying key mechanisms 
of vascular remodeling.  
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