

An Integrative Multi-Scale Model of Extracellular Matrix Mechanics in Vascular Remodeling

Katherine Yanhang Zhang

Assistant Professor Department of Mechanical Engineering Department of Biomedical Engineering Division of Material Science and Engineering Boston University, Boston MA 02215, USA

October 5th, 2011

Motivation

- Cardiovascular diseases (CVDs) are responsible for 40 percent of all deaths in the U.S.
- Many CVDs involve arteriosclerosis, or hardening of the arteries due to structural changes in blood vessel walls.
- Lack of understanding on the mechanisms that control structural and functional changes in blood vessel walls.

Objectives

- To develop a multi-scale predictive mechanobiology model of extracellular matrix (ECM) mechanics that integrates *biomechanical integrity*, *biochemical composition stability*, and *microstructure of the ECM*.
- To better understand the underlying physics of arterial stiffness—and ultimately, CVDs.

Structure of the arterial wall

BOST

Adventitia

(collagen,

nerves, capillaries)

fibroblasts,

Media

(elastic

fibers, SMCs,

UNIVERSI

- Arteries are large diameter vessels that move blood away from the heart to the body
- Elastic to accommodate cardio-respiratory function and pulsatile blood flow
- Three layers

Importance of elastin and collagen in the BOSTON mechanics of arterial Wall

- Majority of the passive mechanical behavior is due to the collagen and elastin
- Elastin is essential to provide the elasticity of dynamic tissues
- Collagen fibers support the load in the stiff region

Mechanically recoil 3×10⁹ times over a 70-year life!

(Sherratt, Age, 2009)

Hierarchical ultrastructure within the ECM

• Mechanical function of ECM at the tissue level is highly dependent on its structure (fiber distribution/orientation) and its biochemical composition (ECM content and cross-linking)

- Fundamental mechanics perspective coupled with critical biophysical input
- Fiber-level mechanical function (cross-linking)

Structural/histological information (fiber content, distribution) Tissue-level mechanical function (normal vs. disease)

Statistical mechanics based constitutive model

Material parameter:

N – number of links within each chain
Locking stretch of the chain; chain
length between cross-links

Orthotropic hyperelasticity of elastin

Material parameters: a=1.8011, b=1.31, c=1.2, n=5.8×10¹⁵(1/mm³) (Zou and Zhang, Ann Biomed Eng, 2009)

BOST

Viscoelastic behavior of elastin

- The dependence of the rate of stress relaxation on the initial stress level is small at physiological load.
- Mterial parameters fitted from one test can be used to simulate the stress relaxation behavior of elastin under different initial stress levels and provide reasonable predictions.

(Zou and Zhang, J Biomech Model Mechanobiology, 2011)

Experiment validation

- Provide validation of the model.
- Determine corresponding material parameters in the model. Fiber

Obstruction Induced Pulmonary Vascular Remodeling

 In collaboration with Boston's Children's Hospital

(Chow et al., J Biomech Eng, accepted)

Structural functional changes

(Chow et al., J Biomech Eng, accepted)

Structural and Mechanical Changes in Elastin Degraded Arteries

- Elastic solid \rightarrow Translucent gel with size increase
- Elastin decreases with longer digestion time
- Size increases due to elastin degradation

(Chow et al., J Biomech Model Mechanobiology, submitted)

Summary and Future Evolution

- Coupled experimental-modeling approach
 - Fiber orientation information of elastin and collagen will be obtained using confocal microscopy and directly incorporated into the model.
 - Content and crosslinking density of elastin and collagen will be measured biochemically through biological assay. Corresponding material parameters in the model will be determined from fits to the biaxial-tensile testing data.
 - Establish relationship between biomechanical integrity, biochemical composition stability, and microstructure of the vessel wall.
- Combine with animal models of vascular remodeling in CVDs and other diseases, this research approach has a great potential to unravel the underlying key mechanisms of vascular remodeling.