Patient-specific multi-scale modeling of cardiac resynchronization therapy for dyssynchronous heart failure

Roy Kerckhoffs, PhD Andrew McCulloch, PhD

2011 MSM Consortium Meeting

Background

 Heart failure is the leading cause of death and disability in older adults worldwide with >250,000 deaths/year in US alone

 Cardiac Resynchronization Therapy (CRT) popular treatment of HF patients with dyssynchronous activation

 Apply patient-specific modeling of the cardiovascular system to identify CRT responders and non-responders

Goal

Integrate patient data to create patientspecific models

Patient Characteristics

	Patient	Normal or range
Sex	Male	
Age	65	
New York Heart Association HF Class	3	1 - 4 (4 being worst)
QRS width [ms]	148	40 - 120
Ejection Fraction [%]	34	50 - 70
Mitral Regurgitant Fraction [%]	49	0 - 20
Left Ventricular End- diastolic Pressure [mmHg]	23	3 - 12

*Aguado-Sierra et al, Prog Biophys Mol Biol, 2011, in press

Geometric reconstruction

64-slice CT or MRI Echo, 2 and 4 Chamber views

→UCSD | **Department of** Jacobs | **Bioengineering**

Unloaded ventricular geometry

Average Projection Error

Human Myofiber Architecture

Fitted end-diastolic 3D geometry Fiber and sheet structure reconstructed from DT-MRI

UCSD | Department of Jacobs | Bioengineering

Tissue conductivity

➡UCSD | Department of Jacobs | Bioengineering

"Klotz curve": passive properties

Absolute pressurevolume relations

Normalized pressurevolume relations

> UCSD | Department of Jacobs | Bioengineering

Mechanical properties

Circulation Properties

- Obtain from echo and catheterization:
 - valve dimensions
 - cardiac output (CO)
 - mean arterial pressure (MAP)
- Set valve dimensions, CO and MAP in Lumped systems model of circulation
- Run FE model coupled to circulation, let remaining parameters be calculated by adaptation rules (CircAdapt model)

Results: Global hemodynamics

CSD | Department of Jacobs | Bioengineering

Results: Fiber strain

UCSD | Department of Jacobs | Bioengineering

Models of Growth and Remodeling Asymmetric growth after 2 months of RV pacing

Acknowledgments

- Cardiac Mechanics Research Group
- Andrew McCulloch, PhD
- Jazmin Aguado-Sierra, PhD
- Adarsh Krishnamurthy, PhD
- Joyce Chuang, PhD
- Christopher Villongco
- Matthew Gonzales
- Jun Shin
- Mansi Sheth
- VA Hospital
- Ernest Belezzuoli, MD
- Sara Johnson
- David Krummen, MD
- Sanjiv Narayan, MD, PhD
- Paul Stark, MD

R01 HL96544

NATIONAL BIOMEDICAL COMPUTATION RESOURCE *Conduct, catalyze and enable multiscale biomedical research*

P41 RR08605