

llya A. Rybak

Department of Neurobiology and Anatomy Drexel University College of Medicine Philadelphia, PA USA

Alona Ben-Tal Department of Mathematics, Massey University, Albany New Zeeland

Julian F. R. Paton Department of Physiology University of Bristol, Bristol United Kingdom

Robert F. Rogers

Department of Neurobiology and Anatomy Drexel University College of Medicine Philadelphia, PA USA

Thomas E. Dick Department of Medicine Case Western Reserve University Cleveland, OH USA

Jeffrey. C. Smith NINDS/NIH Bethesda, MD USA

NINDS/NIH Grant R01 NS069220

MSM Consortium Meeting, October 5, 2011

Question:

What can we learn from simple models to study complex systems?

Generation and quantal acceleration of the abdominal late-expiratory activity development of hypercapnia (experimental data)

Generation and quantal acceleration of the abdominal late-expiratory activity with the development of hypercapnia (experimental data)

Complex computational model of the brainstem respiratory network

Complex computational model of the brainstem respiratory network

Generation and quantal acceleration of the abdominal late-expiratory activity with development of hypercapnia (model)

Complex computational model of the brainstem respiratory network

Simplified model

Proposed interactions between BötC/pre-BötC and pFRG/RTN

Analysis of both the simplified and full models provided a plausible mechanistic explanation of the appearance and quantal acceleration of the abdominal late-expiratory activity with development of hypercapnia.

It is suggested that under normal metabolic conditions the RTN/pFRG oscillator is inhibited by both the post-I population of BötC during inspiration and early-inspiratory (early-I) population of pre-BötC during inspiration.

Therefore the late-E oscillations can be released by either a hypercapnia-evoked activation of chemosensitive RTN/pFRG neurons overcoming this inhibition or a hypoxia-dependent suppression of RTN/pFRG inhibition by BötC-pre-BötC circuits.