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I. Introduction 

This white paper aims to present numerical methods that facilitate integration of subcellular and 
cellular scale to macroscale in the human body, and identify associated multiscale modeling issues 
from the numerical standpoint. Due to the complexity of the human body, the strategies for model 
integration may be quite different depending on specific problems. Therefore, several examples of 
multiscale model integration are provided in the appendices A-D.  

A. Airway defense system (3 scales): 3D-1D coupled macro-microscale airway tree system (at 
organ level), image-driven technique (global) and fluid-structure interaction (local) for a 
breathing lung, and epithelial cell model for biochemical signaling pathways that regulate 
water volume for cilia beating and airway clearance. The integrated multiscale model allows 
simulation and prediction of airway defense system in health and diseased lungs. 

B. Cerebro-vasculature (3 scales): 3D-1D coupled macro-microscale intracranial arterial tree 
system (at organ level), fluid-structure interaction, and dissipative particle dynamics (DPD) 
for red and white blood cells. The integrated multiscale model allows study of the processes 
of initiation, growth and rupture of cerebral aneurysms. 

C. Gastrointestinal tract (2 disparate motility scales plus nutrient transport): advanced lattice 
Boltzmann algorithms were applied to: (1) macro-scale intestinal flow (2D and 3D), (2) 2D 
and 3D models of the interactions among between macro-scale eddying flow and a micro-
mixing layer generated by the motions of micro-scale finger-like villi along the mucosal 
surface, (3) a fully coupled 3D model of the enhancement of nutrient transport from the macro-
micro scale interactions in the intestine with finger-like villi on the intestinal surface. These 
simulations have been combined with an image-based study of macro-scale motility in the rat 
intestine using time-resolved magnetic resonance imaging. The basic physics of nutrient 
transport from the bulk flow to the mucosal surface from the interactions between highly 
disparate scales of macro and micro scale motility were studied and the characteristics of villi 
motion that are required to enhance absorption were deduced. Quantifications of the 
hydrodynamic environment in the intestine from these models have been subsequently applied 
to studies of drug dissolution. . 

D. Tumor growth (3 scales): an intracellular model for signaling pathways that determine cell 
cycle, a cell model at the cellular level using a discrete Monte Carlo method (aka cellular Potts 
model, extended large-Q Potts model and Glazier-Graner-Hogeweg or GGH model; a lattice-
based method to simulate the collective behavior of cellular structures) for cell migration, 
growth, proliferation, cellular adhesion, and extracellular matrix degradation, and a continuum 
partial differential equation-based model for extracellular environment to describe diffusion, 
uptake, and decay of signaling molecules and metabolite. The model integration at the intra-
cellular, cellular, and extra-cellular levels allows prediction of tumor growth and tumor-
induced angiogenesis. 

 
Through these examples, several common themes on numerical methods and modeling strategies 
emerge for discussion. They are: 

1. Fluid-structure interaction (FSI) 
2. Image-registration driven simulation 
3. 3D-to-1D model coupling and interface conditions 
4. Combining continuum-mesoscale-atomistic-level simulation  
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5. Interface and boundary conditions: accuracy and dynamical importance 
6. Multiscale geometry representation and boundary conditions 
7. Integration of imaging data with modeling and computer simulation 
8. Direct vs. indirect interactions between processes that operate at disparate scales 
9. Uncertainty in materials properties and geometry 
10. Sensitivity and uncertainty in multiscale and multiphysics integration 
11. Cell models  

One major objective of this white paper is to discuss the advantages, limitations and prospects of 
different numerical methods and modeling strategies and their integrations for predicting 
integrative physics and physiology that take place at disparate scales. The ultimate goal of the 
white paper is to advance the development and application of multiscale methods for the study of 
biological problems where multiscale interactions are important, and to facilitate national and 
international collaborations. 

 

II. Generic Definitions of  “Model,” “Computer Simulation,” and “Multiscale Modeling” 

Definitions: 

Model: the representation of a physical process of interest with another (e.g., mathematical 
model in physical science or animal model in medical science). 

Mathematical Model: Mathematical representations of dynamical processes within physical 
systems based on the laws of physics and combined with empirical data. 

Computer Simulation: Production of data on computer systems from numerical methods 
applied to the solution of mathematical representations of dynamical systems based on 
the laws of physics and combined with empirical data. 

Multiscale Modeling: mathematical modeling or computer simulation involving the coupling of 
dynamical processes that occur at disparate scales (i.e., scales that differ by at least an 
order of magnitude). 

Scales: 

The basic molecular to continuum regimes of fluid flow are based on the separation between length 
scales in the flow h relative to the mean free path λ, the average distance between molecular 
collisions. The Knudsen number 

 

Kn = λ /h  roughly defines the following regimes: .  

Kn ≤10-2, continuum flow 

10-2≤ Kn ≤0.1, slip flow 

0.1≤ Kn ≤10, transitional flow 
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O(10) ≤ Kn, free-molecular flow 

The relationships between Kn and h of some flow devices are shown in Fig. 1. 

 
Figure 1: Typical MEMS and nano technology applications in standard atmospheric conditions 
span the entire Kn regime. “h” is the characteristic length scale for the flow (from “Micro 
Flows” by Karniadakis and Beskok, Springer, 2002).  

 

 

Numerical methods: 

Depending on the time and length scales of a process/system, different numerical methods have 
been adopted for simulation as illustrated in Fig. 2. These methods can be classified by one of 
the three theories (or regimes): continuum-level methods (finite difference, finite volume, and 
finite element methods), mesoscopic methods (lattice Boltzmann, dissipative particle dynamics 
and Monte-Carlo methods), and atomistic methods (molecular dynamics). There is currently a 
need to integrate across methods to accommodate multiscale dynamics and statistics. These 
theories can be based in an Eulerian, Lagrangian or Eulerian-Lagrangian combined framework to 
describe the deterministic and/or stochastic nature of the process. 

In the continuum regime (e.g. for flow with Kn ≤10-2), finite different method, finite volume 
method, and finite element method can be applied to discretize partial differential equations (PDE), 
ordinary differential equations (ODE), or integral form of mathematical governing equations. The 
continuum theories are based on physical principles, such as conservation of mass, Newton’s 
second law of motion, and conservation of energy. The methods in this regime can be regarded as 
macroscale methods. 
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Mesoscale methods are based on the concept that coarse-graining can provide an intermediate 
bridge between continuum and molecular dynamics (MD) modeling strategies. In a Lagrangian 
framework a coarse-grain particle represents a group of molecules, whereas in an Eulerian 
framework a particle distribution function is assigned to a lattice point in phase space. Mesoscopic 
methods are based on rules for motions and interactions of coarse-grain particles or particle 
distribution functions that must be grounded in the laws of physics. Some mesoscale methods and 
their features are: 

• Lattice Boltzmann Methods (LBM): fixed grid (lattice), particle distribution functions, rules 
of streaming and collision based on a discretization of the continuous Boltzmann equation from 
which the continuum level conservation laws can be derived. 

• Dissipative Particle Dynamics (DPD): no grid, tracking individual particles, Newton’s second 
law of motion for particle, inter-particle energy potential (Hamiltonian) for particle 
interactions.  

• Monte Carlo method (MC): fixed grid (lattice), Hamiltonian, rules of random (stochastic) 
process (requiring generation of random numbers), indirect empirical application of the laws 
of mechanics. 

Microscale methods deal with motions and interactions of individual molecules/particles/cells. 

At microscopic and mesoscopic levels, individual particles are viewed as discrete entities and their 
behaviors are regarded as a sequence of discrete events, exhibiting stochastic natures. When 
applying these microscale/mesoscale methods to simulate physical phenomena at macroscopic 
levels, an important requirement is for these methods to recover governing PDEs or physical laws 
at the continuum regime. In the examples presented in appendices, DPD, LBM and MC are applied 
to simulate red blood cells (appendix B), cavity-villi interactions in gastrointestinal tract (appendix 
C), and tumor cells (appendix D), respectively. For the airway defense system, the epithelial cells 
lining the airway wall are not physically modeled because they are stationary, sitting on basement 
membranes, although they may be subject to stretching and compression of mechanical forces. 
With the relationship between stress and ATP release measured from the cell culture experiment, 
the airway epithelial cell model can model intracellular biochemical processes and signaling 
pathways at molecular level.  
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Figure 2: Numerical methods for different time and length scales (from Gao, H., Modelling 
Strategies for Nano- and Biomaterials, “European White Book on Fundamental Research in 
Materials Science”, Max-Planck-Institut, Germany, 2001). 

 

When applying the above numerical methods to PDEs, physical principles or theories that govern 
the system, we obtain a model. 

 

III. Multiscale Nature of Human Bodies  

In order to move toward a true Physiome, we need to understand and integrate across disparate 
scales within the structure and function of the human body at all levels, including the organ level, 
the tissue, the cellular level, and the molecular level. Multiscale phenomena occur across all levels 
and certain multiscale interactions play key roles in function and their disruption in disease. An 
example of key components linking scales in the same level and across levels are stress 
transmission and mechanotransduction (one form of signal-transduction; note that the majority of 
signal transduction is mediated by signaling molecules). For example, Fredberg and Kamm (2006) 
elucidated in a review article about multiscale phenomena in the lung that “The pathway for force 
transmission [by application of physical forces on the macroscale and their transmission to the 
scale of small airways] then continues down to the level of cell, nucleus, and molecule: moreover, 
to lesser or greater degrees most cell types that are resident in the lung have the ability to generate 
contractile forces. At these smallest scales, physical forces serves to distend the cytoskeleton, drive 
cytoskeletal remodeling, expose cryptic binding domains, and ultimately modulate reaction rates 
and gene expression.”  

Another example is neuromuscular physiology where neuronal activity at the cellular level directly 
controls activity in the muscles at the tissue level. Whereas neural control is based on chemical 
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transport and kinetics at the molecular scale, the response to neural stimuli at the tissue level 
integrated directly with the generation of mechanical stresses within muscle structures at the macro 
scale, and has a direct impact on function, dysfunction, and disease. Indeed, it is at this level that 
the connection with medical science, particularly clinical medicine, often occurs. 

Ingber (2003) and Tschumperlin and Drazen (2006) had also recognized the importance of 
integrating mechanics into understanding of the molecular basis of disease. That is, mechanical 
forces (resulting from the movement of our bodies) are transmitted from macroscale to microscale 
at organ level and across levels to cellular level. Cells then sense and respond to mechanical stress 
(aka. cellular mechanotransduction that converts a mechanical stimulus to biochemical process). 
A wide range of diseases are resulted from abnormal mechanotransduction in response to abnormal 
mechanical stress and subsequent intracellular/subcellular reactions. 

References: 

Fredberg, J. J. and R. D. Kamm, Stress Transmission in the Lung: Pathways from Organ to 
Molecule. Annu. Rev. Physiol. 68:507-541, 2006. 

Ingber, D. E., Mechanobiology and Diseases of Mechanotransduction. Ann. Med. 35(8): 564-
577, 2003.  

Tschumperlin, D. and J. M. Drazen, Chronic Effects of Mechanical Force on Airways. Annu. 
Rev. Physiol. 68:563-583, 2006. 

 

IV. Recommendations 

Current multiscale methods: 

The multiscale modeling methods adopted by the four projects presented in the appendices are 
summarized in a table below. “x” in the table means that it is used as explained in appendices. 

Scale Macroscale to extra-cellular level Mesoscale 
cellular 
level 

Microscale 
intracellular 
level 

Methods Global Local Fluid Solid FSI Collective 
structural 
behavior 

Biochemical 
signaling 
pathways 

Geometry  Organ 
scale 

Part 
of 
organ 

Subject-
specific 
prediction 

General 
predictions 

Subject-
specific 
predictions 

General 
predictions 

1 way 
coupling 

2 way 
coupling 

Lung 3D3D, 
3D1D 

3D FEM  FEM  IR FEM cell culture 
experiment 

x 

Blood 3D1D 3D FEM  FEM   FEM DPD  
GI tract 
(gut) 

2D 3D 
LBM, 
organ 
scale 

2D 
3D 
LBM 

 LBM   x    

Tumor x x  x x x  x MC, rule Boolean, 
rule-based 
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The key to achieve an integrative Physiome lies in our ability to modeling (multiscale) stress 
transmission in the same level and across levels and mechanotransduction at cellular level.  

To accurately model stress transmission and transport starting at the organ level, accurate time-
dependent quantifications of anatomy at the organ and tissue levels with detailed individualized 
geometrical features in a dynamic setting are needed. The approaches of 3D-3D (large-scale 3D 
structures coupled with small-scale 3D ones) and 3D-1D (large-scale 3D structures coupled with 
small-scale 1D ones) are adopted. To model mechanical forces in a living system, both fluid (air, 
blood and gastrointestinal flows) and solid (tissue and extracellular matrix) and their interactions 
are modeled. Whereas in some models the space-time changes in fluid boundaries are obtained 
from imaging data, other models integrate fluid-structure interaction (FSI). Whereas image data 
are often used to describe average geometry behaviors, image-registration (IR)-based simulation 
is also being employed. To accurately predict the sequences of intracellular/subcellular events 
associated with mechanotransduction, it is necessary to model the mechanical stress in the setting 
of cell microenvironment, that is why cell culture experiment, DPS and MC are used in different 
applications. Intracellular modeling is aimed at understanding the mechanotransducting 
mechanism.  

 

Issues and recommendations: 

1. Education: 
To achieve a better integrative Physiome, computational scientists and engineers need to 
learn more about mechanobiology. Likewise, biologists and medical scientists need to be 
better educated in the application of the laws of mechanics and about mathematical and 
computer modeling methods.   
We recommend that NIH sponsor short courses/summer workshops offered through NIH 
sponsored centers and leading institutions by inviting instructors/speakers/attendees 
worldwide in various disciplines, including basic mechanics, computational 
science/engineering, mechanobiology, physiology, medicine, imaging, geometric 
modeling, and among others. 
 

2. Imaging and Geometric Modeling: 
Structure determines function, and function may alter structure. To understand structure-
function relationship at all levels, we need to improve the accuracy of imaging, image 
analysis and geometric modeling of structure, and to quantify the uncertainty of geometric 
models and its effect on function. Examples include the airways and vessel trees or 
subcellular and cellular structures. In many applications dynamical changes with time are 
central, but space-time imaging and image analysis is not as far advanced as is static 
imaging. Examples include the gastrointestinal and cardiac function. 
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We recommend that NIH promote study of image-based morphology at the organ and 
tissue functional levels, and the integration of imaging data into modeling strategies. 
Specific focuses should be placed on space-time imaging and image analysis, and on 
uncertainly and the statistical quantification of inter and intra subject variability in health 
and disease.  
 

3. Transport within Biofluid Flow Simulation: 
Transport within biological fluid flows occurs over an extremely wide range of scales and 
with complexity that includes critical interactions at the cellular level and transport at the 
molecular level within continuum level bulk flow. To study multiscale interactions in 
association with fluid flow, we recommended that emphasis be directed at the accuracy of 
bio fluid flow simulation at different scales and that empirical and approximate modeling 
strategies be progressively replaced by more exact methods grounded in the laws of physics 
and with the lowest reasonable level of parameterization. In this way more modeling and 
computer simulation will be directed, over time, to become increasingly physiologically 
relevant. 
 

4. Tissue Properties and Multiscale Tissue Mechanics: 
Tissues properties in vivo are lacking. More quantitative experimental measurements of 
cell and tissue level behaviors and properties are needed to establish baseline model 
parameters and to validate simulation results. These properties are important in modeling 
fluid-structure interaction for stress transmission and for neuromuscular controls. We 
recommend that NIH encourage and support the development of new methods for 
quantifying tissue properties and modeling multiscale tissue mechanics that can address in 
vivo as well as in vitro response.  

 
5. Uncertainty Quantification: 

We recommend that NIH emphasize the quantification of uncertainties in tissue and fluid 
properties, geometrical modeling, model parameterization, constitutive laws, or model 
boundary condition, and the impact of such uncertainties in multiscale and multiphysics 
integration. 
 

6. Development of New Mathematics for Multiscale Biological Modeling:  
We have standard techniques to solve and analyze PDEs, but we don’t have the equivalent 
for the rapidly growing field of mathematical/computational biology. In particular the 
state-of-the-art multiscale models in biology are at present more like art and magic than 
rigorous mathematics. The long-term goal would be to enable the next generation of 
students and researchers to pick up textbooks and learn methods to analyze multiscale 
models like we can now with PDEs. 
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Future direction of health care: 

Applications of multiscale models are expected to include improved ability to, for example, detect 
the onset, progression, extent and location of functional and structural disorders at all levels of 
human bodies.  

With the mapping of the human genome essentially completed, and we contemplate modification 
of the very genetic nature of disease and disease susceptibility, we must have sensitive, quantitative 
methods that can rapidly assess and further predict subclinical phenotypic outcomes. This is 
particularly difficult when pathologic changes are slow to develop, heterogeneous, and multiple 
pathologic processes intermingle. Understanding and prediction of (fluid and tissue induced) 
mechanical stress in an individual subject’s anatomy and the pathways for their transmission from 
organ to molecule allow us to understand pathogenesis and progression of disease at the most basic 
level, and possibly use the model to design and test novel molecular therapeutics for diseases. This 
personalization of medicine through imaging and associated value-added high level modeling is 
determining the direction of health care in the next decade, and adds additional meaning to 
genotypic patient specific descriptors. 

 

V. Working Group Goals and Tasks  
1. Publication: Special issues on multiscale modeling in high-quality, high-impact archival 

journals, e.g. Journal of Computational Physics. 
2. Conference: Joint U.S. IMAG MSM and Euro VPH meeting (2011): seek financial support 

from NIH and NSF or others. 
3. Collaboration: Promote collaborations between WG members (through grant applications) 

to build a more integrative model toward Physiome. 
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Appendix A:  

 
Modeling of Airway Defense System in the Human Lung 

by Ching-Long Lin 
 

I. Need for an Integrated Cell-Mechanics Model 
 

Airway defense is a multiscale process, involving mechanotransduction to transmit oscillatory 
mechanical force from macro scale (motion of lung, rib cage, diaphragm, and abdomen) to micro 
scale (airflow-induced shear stress and tissue stress at a local level), and further translation to 
biochemical responses via cell signaling to maintain the periciliary liquid (PCL) volume for 
mucociliary clearance. Lung diseases may alter mechanical force, which then alters stress-
mediated adenosine triphosphate nucleotide (ATP) release, disturbs PCL water homeostasis, and 
weakens the integrated airway defense system, forming a vicious cycle of events. Airway 
bifurcation is particularly sensitive and vulnerable to the above pathologic process because local 
maximum stress is located in the vicinity of the bifurcation and increases substantially with airway 
stiffening and narrowing as found in the diseased lungs so that it can easily exceed the normal 
physiological range of stress. In the healthy lung, PCL and mucus - together with trapped inhaled 
bacteria and particulates - are continuously transported cephalad by coordinated ciliary beating. 
The bifurcation is a singular point where the inner walls of daughter branches meet and 
toxins/irritants accumulate; this is therefore a key weak spot in the network of mucociliary 
transport. A failure to maintain PCL water homeostasis near the bifurcation might effectively 
disrupt this defense pathway.  

In order to understand the relationship between mechanical forces at the organ level and cell 
responses at the cellular level and model the airway defense system, the systems biology approach 
that integrates mechanics and cell models is needed. The mechanics model utilizes imaging-based, 
high-fidelity fluid-structure interaction (FSI) computational technologies for three-dimensional 
(3D) fluid and solid mechanical systems to predict airflow-induced shear stress and tissue stress at 
a local level in the realistic human lung models. The cell model is based upon mathematical cell 
biology and in vitro data for epithelial cells and nucleotide metabolism to predict ATP release, cell 
metabolism, ion and water transport, PCL height, and calcium ion concentration [Ca2+]. The stress 
computed from the mechanics model is used as an input for the cell model. The predictions by the 
cell model, such as PCL height and [Ca2+],  can be mapped to the 3D airway geometry to study the 
interaction between lung and cells and its role in the distribution and progression of lung disease.  
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II. Critical Link Between Scales: Cellular Response to Mechanical Force  
 

The human bronchial epithelial (HBE) cells, like other cell types (e.g., endothelia), have 
mechanosensing capabilities that can detect changes to the extracellular micromechanical 
environment. The mechanical force exerted on the lung to change lung volume and pulmonary 
airflow can be transmitted from the organ level down to the levels of tissue, cell and molecule. 
From HBE cell culture experiments, Tarran et al., (2005, 2006) and Button et al. (2007, 2008) 
found that HBE cells respond to mechanical force. Figure 1 shows that the epithelial cells release 
ATP into the PCL in response to: (1) airflow-induced oscillatory shear stress and (2) 
(transepithelial) cyclic compressive stress (CCS). Here oscillatory (or phasic, cyclic as opposed to 
static) indicates inspiration/expiration of the airflow and expansion/recoil of the lung. CCS mimics 
the transmural airway pressures of tidal breathing. Their major findings are: (1) HBE ATP release 
only responds to phasic motion, (2) the ATP release increases with increasing stress, but quickly 
reaches a plateau. These findings suggest that the rate of change of stress, not just its magnitude 
alone (due to phasic motion), is the important stimulus for ATP release into the extracellular PCL 
environment. ATP, along with its metabolite adenosine, interact with airway epithelial purinergic 
receptors, to up-regulate transcellular ion and water transports that increase PCL volume and 
ciliary beat frequency to accelerate mucus transport. HBE cells also protect themselves from over-
stimulation and flooding of the airways by limiting ATP release during non-physiological stresses 
(refer to the plateau in Fig. 1). Thus, beyond the physiological range of stress, ATP release rates 
become less sensitive to higher stresses applied.   

 

 

Figure 1: Release of ATP during physiological stress. Relationship with magnitude of 
oscillatory (A) shear stress and (B) compressive stress. Red lines denote the 
physiological range of stress during tidal breathing (Button et al., 2007, 2008). 
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III. Cell Model 
 

In healthy subjects the PCL extends from the cell surface to a depth equal to the length of an out-
stretched cilium. The cilia beat in a coordinated fashion at ~7Hz. If the PCL layer is not maintained 
at an adequate depth the cilia may become entangled in the mucus, and unable to disengage in the 
recovery stroke, resulting in no net movement of mucus. Conversely, if the PCL layer is too deep 
the cilia may be unable to contact the mucus to apply force. It is therefore imperative that ASL 
hydration is maintained within a specific tolerance, and hence it is one of the most tightly regulated 
microenvironments within the body. To maintain the optimal PCL depth of ~7µm, water 
movement into and out of the lumen is regulated through active ion transport. Normal airway 
epithelium has the capacity to absorb and secrete salt, predominantly Na+ and Cl-, thereby 
generating osmotic gradients which induce water flow across the epithelium. Figure 2 shows a 
schematic diagram of the mechanism by which ion channels, pumps, and cotransporters establish 
an osmotic gradient to drive water flow (Warren et al., 2009, 2010). The epithelial Na+ channel 
(ENaC) serves as the major conduit for Na+ through the apical membrane, and the Na+-K+-ATPase 
is the mechanism of basolateral extrusion. Transport of Cl- through the apical membrane is 
primarily through the CFTR and the Ca2+-activated Cl- Channel (CaCC).  

Under a number of stress conditions airway epithelial cells release nucleotides into the lumen 
(see Fig. 2). Nucleotides act as signaling molecules to activate cell surface receptors, and are then 
degraded via ecto-nucleotidease activity. The P2Y2 receptor plays an important role in this 
autocrine response. P2Y2 receptors are G-protein coupled receptors (GPCRs), which act through 
the Gq/Phospholipase C pathway to produce the cytosolic signaling molecule IP3 (inositol-
triphosphate, a secondary messenger). Cytosolic IP3 binds to Endoplasmic Reticulum (ER) 
receptors, triggering the release of calcium from the ER into the cytosol. Intracellular IP3 
concentration is known to be calcium dependent and this feedback is responsible for the 
characteristic oscillations of [Ca2+] concentration within the cytosol. The rise in [Ca2+] within the 
cell also activates CaCCs and Calcium-activated potassium channels (CaKCs) causing an osmotic 
gradient to form across the epithelium, which results in a flux of water into the lumen.  

We plan to adopt a mathematical model that predicts PCL height and [Ca2+], i.e. disruption 
from PCL volume homeostasis leading to an intracellular Ca2+ transient reaction, in response to 
stress-mediated ATP release (Warren et al., 2009, 2010). The model has been compared against 
the experimental calcium traces of the rabbit tracheal epithelial cells upon stimulation with 0.1, 1, 
and 2 µM ATP (Zhang et al., 2003). The model predicts similar [Ca2+] oscillatory behaviors and 
pulsatile change of PCL height.   
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Figure 2: Schematic of epithelial model components (Warren et al. 2009), showing the 
production of IP3 after being triggered by an extracellular stimulus, the regulation of 
the inositolphosphate pool, and Ca+ handling of the cell activated through IP3. AQPs, 
aquaporins.   

 

IV. Mechanics Models  
 

One-way and two-way FSI mechanics models (Choi et al., Lin et al., Tawhai et al., Xia et al.) may 
be adopted to predict stress distributions in the human lungs. In the one-way FSI approach, the 
fluid (CFD) and solid (CSM) solvers are executed separately (Fig. 3). The boundary surface 
meshes between fluid (pulmonary gas flow) and solid (lung tissue mechanics) domains and the 
lobar and vessel tree boundary meshes are deformed using the image-registration derived 
displacement fields. The airway and lobe deformations are determined a priori to match as 
precisely as possible with CT images at different lung volumes (Yin et al.), and then are provided 
to both solvers as Dirichlet boundaries. In the two-way FSI approach (Fig. 4), the FSI interface 
between fluid and solid domains now are treated as internal nodes, and their positions and 
velocities are computed from the interactions between pulmonary gas flow and lung tissue 
mechanics. Any disagreement between the deformed airways (or the displacements of lung tissues) 
and those derived from image registration indicates that the FSI model has flaws caused by either 
prescribed lung biomechanical properties for CSM or lack of incorporation of detailed 
physiological processes into the model. A comparison between two-way and one-way FSI 
solutions allows identifying the potential source of the problem that causes the disagreement. One-
way FSI is considered more accurate, but more restrictive, than two-way FSI because the former 
relies more on measurement data.  
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Figure 3: 3D-1D coupled airway tree and five lobes at (A) the minimum volume (55% VC) and 
(B) the maximum lung volume (85%VC). (C) The distribution of deformation as a function of 
normalized lung height from the apex (100%) of the lung to the base (0%) calculated from the 
Jacobian. ∆V and ∆L denote volume and length changes. The subscript “max” corresponds to 
the maximum lung volume. Tawhai and Lin (2010) 

 

 
 

  

Figure 4: Meshes of a CT-based airway bifurcation: (A) wall, (B) lumen. (C) Volume 
change of the lumen between peak inspiration (wireframe) and resting state (gray) at 
Re=183. Deformation in: (D) the bifurcation plane, and (E) the transverse plane before 
bifurcation (black, maximum deformation; red, resting state). Xia et al. (2010) 

(A) 

(C) 

(B) 

(D) (E) 

(A) (B) (C) 
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V. Methods and Integration 
 

A key component in the airway-defense system is “stress-mediated ATP release” that 
interconnects three scales: pulmonary airflow at the organ scale (which exerts shear stress on the 
airway liquid lining the epithelia), tissue tensile force at the tissue scale (which produces CCS on 
the epithelia), and epithelial cell response and signaling at the cellular/molecular scale (which 
releases ATP in response to cyclic stresses). 

With the relationships between stress and ATP-release measured from cell culture experiments 
(Fig. 1), accurate prediction of ATP release (output), which up-regulates cell signaling and reaction 
to maintain PCL volume and hydration, relies upon accurate prediction of stress (input) that 
triggers its release in a location-specific and state-specific manner. Therefore, the stress computed 
from the mechanics model will be used as an input for the cell model. The cell model together with 
the thermodynamics laws for heat and moisture is then used to predict the biochemical responses 
of HBE cells and the regional distributions of PCL water level and [Ca2+] concentration. These 
predictions can be mapped to the 3D airway geometry to study the interplay between cell and 
organ.  
 

VI. Limitation 
 

1. Single versus multiple types of cell models: Mechanical stress may simultaneously affect 
several cell types that shape and remodel airway structure, and vice versa. Here we only 
consider HBE cells.  

2. Liquid lining, mucus layer, and cilia: The airway surface liquid (ASL) lining covering the 
epithelia (PCL+mucus layer) is modeled as a compartment with dynamically changing depth; 
however we do not consider fluid interaction with the cilia in the PCL or the mucin release 
pathway. Whether cilia act as flow sensors in epithelia to transduce phasic stress is not known. 
Mucociliary clearance can be modeled by three different approaches: phenomenological, 
slender body theory, and FSI models (Smith et al., 2007, 2008; Yang et al., 2008), all from the 
mechanical point of view only.  
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Appendix B:  by George Karniadakis 

Need for an Integrated Cerebro-Vasculature Model  
 
The human brain although less than 2% of the body weight, receives about 20% of the resting 
cardiac output of blood and 25% of body's oxygen supply. Interactions of blood flow in the human 
brain occur between different scales, determined by flow features in the large arteries (diameter of 
0.5 mm or larger), the smaller arteries and arterioles (500 microns to 10 microns), and the 
capillaries (mean diameter of 5 microns) all being coupled to cellular and sub-cellular biological 
processes. While many biological aspects have been studied systematically, surprisingly less effort 
has been put into studying blood flow patterns and oxygen transport within the brain, i.e., the 
fundamental biomechanical processes of the integrated intracranial vascular network. However, 
recent pioneering 3D imaging of the human brain by Cassot et al. (2006)  and of the mouse brain 
by Mayerich et al. (2008)  provides statistical information for constructing realistic topological 
models on which future brain simulations will be based. A key observation is that arterioles down 
to 10 microns follow a tree-like structure (governed by a fractal law) whereas the capillary bed 
(below 10 microns) follows a net-like structure. 
 

 
Figure 1:  MaN simulations involving a complete Circle of Willis consisting of 65 arteries. Colors 
represent pressure (inner part is transparent to show velocity vectors and not pressure levels) 
arrows velocity, XY plots depict flowrate in ml/s and pressure drop in mmHg. Top right: 
instantaneous streamlines shown swirling flow in communicating arteries. Bottom right: MRA 
image of the cranial arterial system provided by Prof. J.R. Madsen & Dr. T. Anor (Harvard 
Medical School). 
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Following these observations and based on other clinical results, it is now possible to advance the 
development of an integrated model of the vascular network in the human brain (cerebro-
vasculature) characterized by three distinct spatial length scales (Grinberg et al, 2009):  
 

(1) The macrovascular network (MaN) consisting of large arteries, down to diameter of 0.5 
mm, which are patient-specific and can be reconstructed from CT/MR imaging. Typically, 
about 100 such arteries are involved surrounding the circle of Willis, which is formed 
downstream of the four main arterial inlets at the neck (two carotids and two vertebral 
arteries); see Figure 1. 

(2) The mesovascular network (MeN) consisting of small arteries and arterioles, from 500 
microns down to 10 microns, which follow a tree-like structure governed by specific fractal 
laws (Cassot et al, 2006; Zamir, 1999). The human brain contains about 10 million small 
arteries and arterioles.  

(3) The microvascular network (MiN) consisting of the capillary bed, which follows a net-like 
structure; its topological statistics have been recently quantified for the human brain in 
Cassot et al. (2006). The typical number of capillary segments in the brain is more than 1 
billion. 

 
We could study each network separately but there are several reasons for coupling these vascular 
networks and not simply model MaN as in Figure 1: (1) to provide a closure for MaN modeling, 
(2) to model brain perfusion in pathological cases, (3) to model neuro-vascular coupling. With 
regards to (1), outflow boundary conditions have been developed that aim to minimize the effect 
of not including the MeN-MiN components (see Figure 1 for a healthy case and Grinberg et al., 
2009). However, it has been found that in pathological cases (e.g., hydrocephalus, aneurysms, 
etc.) the blood flow circulation depends strongly on the outflow boundary conditions. For example, 
in a systematic study of brain aneurysms the size effect of the computational domain was examined 
and differences of up to 100% in wall shear stress (WSS) on the aneurysm were found (Baek et al, 
2007). Clinical data can be used at all the outlets but such measurements are extremely difficult 
and costly. This and other results point to the need for a closure model, that is, a full-scale model 
that couples the macrovascular “image-based” simulations to the “subpixel” simulations involving 
the mesovascular and microvascular networks as well. This multiscale (MaN-MeN-MiN) brain 
model will provide the closure conditions. With regards to (2), a full-scale mode will facilitate 
physiologically correct simulations of brain perfusion and associated pathologies (e.g., malaria, 
sickle cells anemia, see Kaul & Fabry, 2004 and Chien et al., 1982) for realistic studies. In 
particular, oxygen transport from the red blood cells (RBCs) to the brain takes place primarily at 
the MiN-MeN levels, and hence these networks have to be explicitly integrated to MaN. Finally, 
to model the active vaso-dilation of the arteries and arterioles we need to couple it to the neuronal 
system accounting explicitly for the action of astrocytes on the surface of the vessels.  
 
In summary, the proposed MaN-MeN-MiN is a conceptual framework that can lead to an 
integrated computational model for the cerebro-vasculature for studying various pathologies in the 
brain. In the next section we give a specific example of a MaN-MiN coupling, where blood cells 
and their interaction with the arterial wall need to be modeled explicitly. 
 
 
 

Specific Example: Multiscale Modeling of Cerebral Aneurysm 
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Cerebral aneurysms (CAs) are pathological, blood-filled permanent dilations of intracranial blood 
vessels usually located near bifurcations in the Circle of Willis (CoW), see Figure 2, see Baek et 
al. (2010 and references therein). CAs occur in up to 5% of the general population, and can cause 
subarachnoid hemorrhage (SAH), a devastating event afflicting over 40,000 Americans each year.  
Over 60% of patients with SAH (a form of stroke) are left dead or disabled, and less than 50% of 
survivors are able to return to their former jobs or level of activity. The processes of initiation, 
growth and rupture of CAs are not well understood, and several -- often contrasting - hypotheses 
on the modified hemodynamics have emerged in recent years, e.g. see the recent reviews in 
(Lasheras, 2007; Sforza et al, 2009) and references therein. 
 

 
 
Figure 2: Left: Reconstructed intracranial arterial tree of a patient with an aneurysm showing the 
circle of Willis and all main arteries. ICA: internal carotid; MCA: middle cerebral; VA: vertebral; 
PCoA: posterior communicating, etc. (Courtesy of Prof. J.R. Madsen and Dr. T. Anor, Harvard 
Medical School). Right: Scanning electron microscope image of the inside layer of a ruptured 
MCA aneurysm showing the disrupted pattern of endothelial cells and blood cells adhered to the 
inter-endothelial cell gaps. (Kataoka et al., 1999). 
 
While one would expect that aneurysm rupture be associated with high pressure or high wall shear 
stress (WSS) magnitude, this is not the case with CAs as no elevated peak pressure and typically 
low WSS values are observed within the aneurysm. Hence, to advance our understanding, we need 
to investigate scenarios beyond the pure mechanical point of view. In particular, we need to 
understand the role of endothelial cells (ECs) and their interactions with the blood cells, i.e., 
platelets, red-blood cells (RBCs) and white cells (WCs). 
 
The Role of Cells: Histological observations have revealed a degeneration of ECs and degradation 
of the intracellular matrix of the arterial walls due to decreasing density of smooth muscle cells 
(SMCs). WSS is related to the endothelial gene expression, and in laminar flow produces a 
quiescent phenotype protecting from inflammation or cell apoptosis. However, flow instabilities 
and oscillatory WSS can trigger certain genetic traits that affect the elastic properties of the arterial 
wall. For example, recent studies reported that low WSS levels in oscillatory flow can cause 
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irregular EC patterns, potentially switching from an atheroprotective to an atherogenic phenotype 
(Meng et al. 2007, Sforza et al. 2009). On the other hand, low WSS can also be protective as it 
leads to thickening of arterial walls, which then becomes more tolerant to mechanical loads. Hence, 
by simply examining the magnitude of WSS we cannot arrive at a consistent theory of aneurysm 
growth or rupture. To this end, experimental studies with ECs subjected to impinging flow (Meng 
et al, 2007) have shown the importance of WSS gradients (WSSG) (rather than the magnitude) on 
the migration of ECs downstream of the stagnation region.  
 
Perhaps the most dramatic evidence on the role of ECs and their interaction with blood cells has 
been documented in a Japanese clinical study comparing ruptured and un-ruptured aneurysms 
(Kataoka, 1999). Ruptured aneurysms exhibited significant endothelial damage and inflammatory 
cell invasion compared with un-ruptured aneurysms; see Figure 2(right) for a typical image. We 
observe that the EC layer is drastically altered and covered with blood cells and a fibrin network. 
Similarly, it was reported in (Kataoka, 1999) that leukocytes (WCs) in the wall could be associated 
with SAH, and endothelial erosion enhances leukocyte invasion of the wall before rupture. In 
addition, the role of RBCs has also been elucidated in recent work in (Cebral et al, 2009): For a 
basilar artery aneurysm, for which 3D angiographic imaging was made just hours before it 
ruptured, a patient-specific CFD model was constructed. It was found that a concentrated inflow 
jet would have impacted onto a small region of the dome of the aneurysm while it remained intact. 
One of the events likely to affect the hemodynamics in CAs, particularly as they become obstructed 
with wire coils, is the formation of red-cell rouleaus. In addition, the role of platelets has not been 
fully explored in experimental work, but clinical tests have documented the existence of 
spontaneous thrombosis in giant aneurysms (Rayz et al, 2008) due to platelet deposition. Thrombus 
formation within the aneurysm is non-uniform due to the complex flow patterns and the interaction 
of platelets with the damaged EC layer. Similarly, it was found in endovascular studies that 
creation of spontaneous thrombosis occurs after stent placement (Vanninen et al, 2003). In other 
studies, enhanced platelet aggregability has been observed in cerebral vasospasm following 
aneurysmal SAH (Okhuma et al, 1991). 
 
A key question regarding the process of aneurysm progression is how to correlate the blood cell 
dynamics and interactions to the complex flow patterns observed within the aneurysms. To this 
end, there are currently two schools of thought: high-flow effects and low-flow effects (Sforza et 
al, 2009). The former suggests that localized elevated WSS cause endothelial injury that causes an 
over-expression of NO production, which in turn can lead to apoptosis of SMCs and subsequent 
wall weakening. The latter points to the stagnation type flow in the dome of the aneurysm, which 
also causes irregular production of NO. This dysfunction of flow-induced NO leads to aggregation 
of red blood cells as well as accumulation and adhesion of platelets and leukocytes along the 
intimal surface (the first layer of the arterial wall). This, in turn, may damage the intima, allowing 
for infiltration of WCs and fibrin. 
 
 
Multiscale Modeling: Considering the aforementioned findings, simulating the rupture of CAs 
requires multiscale modeling to account for blood flow in MaN and for explicitly accounting for 
the presence and interactions of blood cells with the arterial wall as well as cell-cell interactions 
(e.g. rouleaux formation). To this end, methods similar to the triple-decker algorithm can be 
employed (Fedosov & Karniadakis, 2009), as shown in the schematic of Figure 3. In particular, a 
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continuum description (Navier-Stokes) can be employed for the large domain to represent 
accurately the flow dynamics in the internal carotid artery (ICA) and also downstream of the 
supraclinoid ICA - including the entire Circle of Willis and other peripheral arteries as needed. On 
the other hand, the smaller (aneurysm-only) domain will represent the region inside and around 
the aneurysm, where an atomistic flow description based on the dissipative particle dynamics 
(DPD) method will be employed. The two domains overlap in order to achieve a seamless 
representation of the flow and facilitate the introduction and removal of blood cells at the inlet and 
outlet.  
 

 
Figure 3:  Left: Flow visualization in a aneurysm based on MaN simulations results Right: 
Proposed multiscale Continuum (NS)--Atomistic (DPD) modeling, showing the two overlapped 
domains and a sketch of the rheology to be simulated inside the aneurysm that includes red blood 
cells (red), platelets (blue) and white cells (white). The dynamics of blood cells will be simulated 
by DPD-LAMMPS. 
 
 
 
 
 

Methods and Integration 
 
Simulations at the MaN level involve the solution of the 3D Navier-Stokes equations taking into 
account the compliance of the large brain vessels. Given proper initial conditions, the system of 
equations describing the fluid flow in the arbitrary Lagrangian-Eulerian (ALE) reference  
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Figure 4: Left - Flow resistance in malaria: Healthy (red) and malaria-RBCs (blue) in Poiseuille 
flow in a arteriole of diameter D=20 microns. The Hematocrit is 45%, and the parasitemia level 
is 25%. Plotted is the relative apparent viscosity of blood in malaria for various parasitemia levels 
and tube diameters. Symbol ``x'' correspond to the schizont stage with a near-spherical shape. 
Experimental data from the empirical fit by Pries et al. (1992). Right -  Increased stiffening of 
malaria-infected RBCs: Simulated stretching of healthy and malaria-infected RBCs at different 
malaria stages compared with optical tweezers experiments of Prof. S. Suresh.  DA and DT refer to 
the axial and transverse diameters.  
 
frame can be solved with any type of CFD methods, e.g. finite elements. This should be coupled 
to hyper-elasticity equations governing the displacements of the flexible arteries and the 
aneurysmal domain. The fluid and solid domains are coupled through proper kinematic and 
dynamics boundary condition at the interface. Modeling of this fluid-structure interaction (FSI) is 
a major challenge cutting across many diverse areas of biomedical modeling.   
 
 

At the MeN level, the quasi-1D Euler hyperbolic equations can be employed accounting also for 
the dynamic motions of the arteriolar tree (Sherwin et al, 2003). The mathematical model is based 
on the nonlinear 1D equations for pressure and for the flow wave propagation in compliant vessels. 
They express conservation of mass and momentum but they are averaged over the cross-sectional. 
Solution of this system can also be solved using any CFD method for hyperbolic systems, e.g. 
finite volumes or discontinuous Galerkin methods. Due to the statistical description of the 
arteriolar tree but also because of uncertainties in its material properties, a stochastic modeling 
approach based on generalized polynomial chaos can be followed (Xiu & Karniadakis, 2002). This 
approach has been found to be very effective for a moderate number of uncertain parameters with 
a speed-up factor compared to Monte-Carlo simulation greater than 1,000.  
 

At the MiN level, mesoscopic methods such as coarse-grained MD or Lattice Boltzmann or the 
dissipative particle dynamics (DPD) can be employed.  In particular, DPD has already been used 
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with success in modeling explicitly platelets and red blood cells, e.g. Fedosov et al. (2010). It is 
based on coarse-graining of MD, with each particle representing a molecular cluster rather that an 
individual molecule (Lei & Karniadakis, 2010). The DPD system consists of N point particles, 
which interact through conservative, dissipative and random forces given forming a system of 
stochastic ODEs, which are solved with extensions of MD methods. DPD has been implemented 
in the popular MD code LAMMPS by Sandia Labs. An example is shown in Figure 4, where 
healthy red blood cells and malaria-infected red blood cells are modeled.  
 

Integration across scales, e.g. coupling MaN-MeN or MaN-MiN or of all vascular networks 
simultaneously depending on the biomedical problem we need to model, should be based on proper 
interface conditions so that mass and momentum (and possibly energy) are conserved. There have 
been many attempts in the literature to couple continuum with molecular dynamics directly both 
for fluids and solids but they have not been adopted for production computing due to the 
complexity of the algorithms and the apparent errors at the interface. In contrast, interfacing 
mesoscopic methods with continuum is more appropriate and conservation laws can be readily 
maintained with the proper use of microscopic forces and torques, e.g., see Fedosov & Karniadakis 
for a description of a triple-decker algorithm (2009).  There are many challenges remaining that 
have to be addressed in the specific context of modeling biomedical problems.  
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Appendix C: 
 

Micro-scale Transport as a Critical Link between Molecular-scale Absorption and  
Macro-scale Mixing in Gut Physiology and Function 

NSF Award CTS-0506215 

James G. Brasseur (PI) 
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Yanxing Wang, Gino Banco (Computational Models) 

Amit Ailiani, Thomas Neuberger (MRI Experiments) 
The primary roles of the small intestine (gut) are nutrient absorption and transport of digestive 

material (chyme). Propulsive wave-like propagations (peristalsis) control axial transport, while 
rhythmic contractions of short segments of the gut (segmentation) are believed to control radial 
transport and absorption (Ehrlein et al.  1987, Macagno and Christensen 1980). Once advected to 
the surface, nutrients must diffuse through a low-velocity diffusion layer known as the “unstirred 
(water) layer (UL)” (Mailman et al.  1990). In vitro estimates of the thickness of this layer has 
been reported up to ~1000 mm (Thomson and Dietschy 1984), however these are mechanically 
unrealistic. Using more accurate methods in vivo, however, thicknesses less than 50mm have been 
reported, suggesting the existence of a “highly efficient stirring mechanism” (Strocchi and Levitt 
1991, Levitt et al. 1992). We hypothesized that the motility of finger-like projections called villi 
(Womack et al.  1989) on the mucosal surface may be responsible. A schematic of a villus is shown 
in Fig. 1. Since it has not been possible to measure villi motion in vivo, we study the potential 
micro-macro scale transport physics through a series of functionally relevant computational 
models. The models apply the lattice Boltzmann (LB) framework to predict fluid motions (Chen 
and Doolen 1998, Succi 2001), nutrient concentration transport using the “moment propagation 
method” (Merks et al. 2002) and absorption with second order moving boundary conditions on 
momentum (Ladd 1994, Lallemand and Luo 2003) and second order zero-concentration at the 
epithelial surfaces to model rapid nutrient absorption (Wang et al.  2010). We also apply a multi-
lattice strategy (Yu et al.  2002) to couple numerically the macro and micro scales. The details of 
the numerical method with higher order boundary conditions, scalar concentration transport, and 
the macro-micro multi grid strategy is described and validated in a recent publication by Wang et 
al.  (2010). 

We began our study with two-dimensional (2-D) models (Wang et al. 2010, Banco 2010). The 
first is a lid-driven cavity flow with 2-D “villi” lining the bottom designed to analyze the fluid 
dynamics by which disparate macro-micro scale motions might interact dynamically to alter of 
nutrient transport and absorption (Fig. 1). The second is a 2-D macro-scale gut model of fluid 
motion and nutrient transport and absorption generated by peristaltic and segmental motility where 
the relative mixes of peristalsis and segmental motility were systematically changed. This model 
was integrated with magnetic resonance imaging data from the rat intestine in vivo (Ailiani et al. 
2009) and was subsequently generalized to a three dimensions. 

There exists a broad literature on models for transport with peristalsis in biological systems (Li 
and Brasseur 1993, Li et al.  1994), however little is understood about segmental contractions 
which are prevalent in the gut (Ehrlein et al.  1987). With the macro-scale motility models (Banco 

 27 



2010) we show that the absorption dynamics of the small intestine at the macro scale is much more 
complex and interesting than is described in the literature. Common wisdom associates 
segmentation with absorption and peristalsis exclusively with transport. In contrast both peristalsis 
and segmentation significantly promote nutrient absorption. However, to maximize absorption 
while minimizing the power required by the muscles to generate the gut motility, segmentation is 
optimal over the range of functionally relevant occlusion ratios. 

To study the interactions between macro-scale eddying motions and a micro mixing layer 
generated by villus motility, a multi-grid lattice Boltzmann model was developed with second 
order moving boundary conditions for lid-driven cavity with villi lining the lower surface as 
illustrated in Fig. 1 with results from Wang et al. (2010) in Fig. 2. The initial 2-D model with 2-D 
“villi” was subsequently generalized to a 3-D cavity flow model with finger-like villi, more 
representative of the human gut (Banco 2010). Results of the 3-D simulation are shown in Fig. 3. 
We show that coordination between the outer macro-scale eddying motion and an inner micro-
mixing layer (MML), generated by specific patterning of villi, create advection-dominated macro 
and micro scale layers separated by an internal micro-scale diffusion layer that work together to 
enhance the rate of transport of nutrients to the epithelium. The strength of the MML is associated 
with vertical ejections of low concentration fluid from between villi groups and absorption 
enhancement results from the return of high-concentration fluid to the villi surfaces from the 
diffusion layer. Three-dimensional motions reduce the strength of the MML while enhancing 
absorption over the legs of the villi (Fig. 3). 

The previous knowledge and model strategies were combined in the design of a three-
dimensional, multi-scale lattice Boltzmann model of the intestine with villi lining the intestinal 
wall (Fig. 4) to study the effects of coupled macro-scale deformations and pendular villous motility 
on absorption in the gut (Banco 2010). These are massive high-performance computing 
simulations requiring TeraGrid resources. We show that active movements of the villi can enhance 
absorption by 25% above that with passive villous movements that are a result of macro-scale 
motility patterns alone. Increasing the length or the frequency of oscillation enhances the effect. 
Consistent with the findings of our lid-driven cavity flow villous motility models, we show that 
the presence of coordinated counter-oscillating groups of villi is a key mechanism in generation of 
the MML, and significantly promotes absorption. Azimuthally moving counter-oscillating groups 
of villi are most advantageous to absorption. Because the azimuthal movements are perpendicular 
to the fluid patterns induced by the macro-scale motility, the interaction produces 3-D fluid 
motions that further enhance mixing and increase the absorption in the gut. As shown if Fig. 5, the 
overall conclusion is that microscale-macro-scale interactions associated with the generation of 
micro-scale mixing motions by villi motility can both enhance and control absorption of nutrients 
(and pharmaceuticals) in the intestine. 
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Figure 1: (a) A single finger-like human villus (from DeSesso & Jacobson, Food Chem. Toxicol. 
39, 209–228, 2001). (b) The multiscale lattice numerical model for studying macro–micro-scale 
interactions: a two-dimensional lid-driven cavity flow with groupings of ‘villi’ at the lower 
surface. The fine lattice covers the villi while the coarse lattice covers the rest of the domain. 
(c) Specification of villi geometry and motion. (Wang et al. 2010) 

 

 
Figure 2: Fields averaged over one period of villi motion with moving lid. (a) Streamlines. (b) 
Isocontours of the molecular concentration field. (c) Vertical concentration flux by advection. 
(d) 
Vertical concentration flux by diffusion. (e) and (f ) show time-averaged fluxes averaged again 
over horizontal planes: (e) concentration, (f ) vertical concentration flux by advection (blue) 
and by diffusion (red). Flux is defined positive from the outer flow towards the villi. In the 
isocontours, high or positive values are red while low or negative values are blue. Zero values 
in (c) and (d) are green. The inset in (a) shows average streamlines overlayed with concentration 
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isocontours. Villus length =200 µm and villus-to-outer frequency ratio =40. (Wang et al. 2010) 
 

 

Figure 3: Streamlines formed by the interaction between the flows generated by villous 
motility and macro-scale circulation. The streamlines wrap around the villi moving 
nutrient molecules into the intravillous spaces. 

Figure 4: Combined multi-scale model of both macro-scale intestinal motility and micro-
scale oscillatory villous motility. Segmental intestinal motility with 960 villi is shown. 
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villous motility, as indicated by the labels below the groups. 
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Appendix D:  

Multiscale Aspects of Modeling Tumor Growth  

Yi Jiang, Los Alamos National Laboratory 

Bridget Wilson, University of New Mexico 

The goal of this white paper is to explore important issues related to developing multiscale models 
of tumor development, using “cell-based” models.  

Premise 1. Multiscale models of mechanics of cell and tissue, especially cell migration in a 
3D tissue context, will require multi-physics, multi-model integration. 

While several multiscale models of tumor development exist (e.g. 1-7), none is able to incorporate 
realistic biomechanics. The integration of biomechanics into the existing frameworks is the crucial 
next step to make these models truly predictive.  

One important aspect of tumor growth microenvironment is the 
extracellular matrix (ECM). This matrix can serve many functions, 
including providing support and anchorage for cells, segregating 
tissues from one another, and regulating intercellular communication. 
The ECM also regulates a cell's dynamic behavior, particularly in the 
context of tumor metastasis and invasion.  Dense breast tissue is a 
strong and frequent risk factor for the development of invasive breast 
cancer and is associated with excess collagen deposition. Transgenic 
mouse tumor studies indicate that excess collagen does promote both 
tumor formation and invasiveness, although the mechanism is 
unclear. In addition, alignment of collagen fibers in tumors correlates 
strongly with tumor invasion, suggesting that reorganization of the 
dense matrix by tumor cells is involved in the invasive phenotype. 
One potential explanation is that dense matrix triggers 
mechanotransduction signaling responses in tumor cells, leading to 
contraction and alignment of collagen fibers and subsequent 
migration by tumor cells. However, it is also possible that the dense, 
aligned matrix is associated with other tumor features, such as 
fibroblast recruitment that promotes tumor progression through other mechanisms. Moving 
beyond correlative data and understanding the underlying mechanisms is difficult using traditional 
experimentation alone, since extracellular matrix (ECM) affects many aspects of both host and 
tumor cell behavior, including migration, invasion, and proliferation. Furthermore, the properties 
of ECM itself are also complex, with diverse topographies and mechanical properties possible 
depending on the density, alignment, polymerization, and crosslinking. 

 
Transmission electron 
micrograph illustrating 
collagen deposits (arrow) 
between cells in an ovarian 
tumor (xenograft model; 
unpublished observations, 
Wilson laboratory).  
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It would be very desirable and important to understand the role of ECM mechanics in tumor cell. 
We therefore propose to use a first principles approach in which we use mathematical modeling to 
test in silico the role of specific aspects of ECM tumor interactions in tumor progression. Using 
such an approach, we can isolate variables and explore quickly a wide parameter space in silico.   

We have developed a cell-based, multiscale modeling framework that have successfully simulated 
avascular tumor growth (2) and tumor angiogenesis (8).  Both are based on the Cellular Potts 
Model (CPM, also called GGH model) (9).  The discrete Monte Carlo lattice-based model 
partitions 2D or 3D space into domains that represent tumor cells and generalized “cell” features 
such as interstitial fluid or basement membrane. Every “cell” has a unique ID number, which 
occupies all the lattice sites within the cell domain, so it has a finite volume and a deformable 
shape. “Cells” have direct contact and interact with each other through surface adhesion and 
competition for space. Interactions are characterized through total system energy, which includes 
an adhesion energy term between cells, a volume energy for cells and a continuity constraint 
applied to migrating tumor cells to prevent nonbiological fragmentation. The extracellular 
chemical microenvironment includes nutrients (oxygen and glucose), metabolic waste, and growth 
factors. Oxygen and glucose are supplied by the external microenvironment. The growth factors 
and inhibitors are produced by cells.  All chemicals follow the reaction-diffusion dynamics.  

An important multiscale aspect of the current model is the inclusion of an intracellular regulatory 
network, representing the cell cycle. Incorporation of this Boolean network allows natural 
emergence of the cell phenotypic outputs of quiescence and necrosis and has been shown to match 
experimental results in a tumor spheroid model. The three levels are closely integrated through 
information flow between the levels. The tumor in our simulation starts from a single tumor cell 
in the center of the medium, and grows into a spheroid tumor consisting of proliferating and 
quiescent cells surrounding a necrotic core (2). Intracellular regulatory networks can be extended 
to other important cellular fate decisions, such as programmed cell death or response to external 
stimuli, by incorporating specific signaling pathways.     

To date, our model of cell-stroma interactions during the early stages of VEGF-induced 
angiogenesis has been based in 2D space (8). The ECM was treated explicitly as a matrix of fibers, 
with the interstitial fluid filling the space between the cells and the fibers. Activated endothelial 
cells proliferate and migrate chemotactically up a VEGF gradient. The model is able to capture 
realistic cell dynamics and capillary morphologies, such as preferential sprout migration along 
matrix fibers and cell elongation, and more complex events, such as sprout branching and fusion, 
or anastomosis, that occur during angiogenesis. We have also investigated possible mechanisms 
for sprout branching by changing the stromal composition. The results suggested that local 
heterogeneities in the stroma, such as matrix fiber density and the presence of stromal cells, 
promote sprout branching and anastomosis. The capillary branching behavior in simulations 
emerged naturally from the cell-matrix and cell-cell interactions in the model. We varied the 
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density of matrix fibers and found specific ranges of matrix fiber densities that maximize sprout 
extension speed, induce branching, or interrupt normal angiogenesis (10). The limitation of 
modeling cell-matrix interactions in 2D is that it cannot accurately model 3D ECM topography, 
including spatial constraints that would prevent migration in tissues. The effects of ECM density 
in 2D models are primarily a function of changes in adhesive strength, similar to what is seen in 
2D in vitro migration studies.   

Another important consideration is the variability of cell-cell 
adhesion complexes between cells in solid tumors.  These 
interactions are maintained by surface receptors, including 
integrins and components of tight junctions, adherens junctions, 
desmosomes and even gap junctions. This is illustrated in the 
figure at right, where the brown stain indicates the locations 
where homotypic interactions between E-cadherin molecules 
serve as the “glue” between tumor cells. Integrate features of 
cell-cell adhesion receptors (integrins) and junctional proteins 
into the intracellular regulatory network that will govern 
behavior of individual cells in tumors with respect to 
maintaining cell-cell aggregation, release and migration away 
from the primary site and attachment to new sites.  These are 
crucial features of the metastatic process and are also closed linked to cell proliferation rates.  Of 
particular interest is the crosstalk between the cadherin and the integrin signaling pathway (e.g. 
11,12).  Hence the cell-cell and cell-matrix interactions are interdependent, and models of 
biomechanics in multiple cell system would need to take both into account. 

In order for the tumor modeling community to address the realistic biomechanics of cell-matrix 
and cell-cell adhesive interactions, new approaches need to be developed that incorporate 3D cell-
ECM interactions. We propose to integrate the ECM mechanics model with the cell-based models 
with cell adhesion regulation. The CPM framework, where cell type dependent adhesion is already 
part of its standard feature, can readily accommodate cell adhesion regulation.  There are several 
different ways to couple ECM mechanics of CPM.  

1. Use a continuous model to describe the ECM mechanics, e.g. a Kelvin–Voigt model, for linear 
viscoelasticity; volume exclusion between fibers and cells is more difficult.  

2. Use a discrete model of ECM, such as a network of worm-like-chains or elastic springs wherein 
the interactions are explicit force balance equations; solutions to the force equations 
approximate the force and deformation of the fibers.  

3. Use a discrete model of ECM within the Cellular Potts Model framework wherein the 
interactions are described by an effective energy. Some other cell-based models, e.g. the cell-
center model based on force calculations, will be able to treat the force coupling between ECM 
and cell more easily, but the consideration of volume exclusion and cell adhesion will be more 
tricky.  

 
E-cadherin labeling of ovarian 
tumor xenograft tissue shows 
variability in cell-cell adhesion 
complexes (Wilson, unpublished 
results). 

 35 



Premise 2. Improved cell-based models of tumor growth are needed to consider fluid and 
molecular transport in the heterogeneous environment, especially in the context of drug 
delivery to tissue and organ 

Models that incorporate fluid and molecular transport within the tumor and surrounding tissues 
will be crucial to understanding role of the tumor microenvironment in tumor growth and survival, 
as well as the accessibility to therapeutic agents.     

If we are considering transport through blood, or lymph flow, at low shear rates or in relatively 
large vessels, fluids behave rheologically as a Newtonian fluid. Therefore, they should be treated 
as an incompressible fluid with constant viscosity. Namely, we should use the following Navier–
Stokes equations:  

 

where u is the flow velocity; ρ is the density of the fluid; and p is the pressure. The viscosity μ is 
assumed to be constant. f is the force density due to cell-interactions.  

On the other hand, when we are considering transport of macromolecules through tissue, then the 
penetration is dominated by diffusion process:  

 

∂C
∂t

= D∇2C − γC + α − β  

where C is the concentration field, and the dynamics include diffusion, decay, source and sink 
(uptake) terms.   

In considering aspects of drug delivery to tumors, it will be necessary to combine aspects of both 
scenarios.   For example, therapeutic agents are typically delivered either orally or by injection, 
depending on their size, hydrophobicity and requirement for specific transport mechanisms.  Initial 
transport may be through blood or other body fluid flow, followed by penetration into tumor tissue.  
Parameters for these processes are hard to obtain and scattered in the literature.   There is some 
utility for “phenomenological models”, to get around some parameter shortage and help to 
constraint the parameter space.  Nevertheless, accurate simulation of these processes will remain 
critically depend on high quality data that is specifically acquired for the modeling effort.   This is 
the most important argument for forming strong interdisciplinary teams, composed of 
computational biologists, bench scientists and animal model experts. Our own MSM group is 
committed to this type of effort. 

Premise 3. Sensitivity analysis can identify most critical aspects where experimental data is 
needed and reduce uncertainty in quantification of system level outputs 

 

∂u
∂t

+ u ⋅ ∇( )u =
1
ρ

−∇p + µ∇2u + f[ ],
∇⋅ u = 0,
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Whenever there are estimated parameters or phenomenological assumptions, uncertainty arises, 
and must be quantified in order for results to have predictive value. One way to attenuate this 
uncertainty is to develop methods for information-passing that quantify data variance. For complex 
systems, it is insufficient to analyze system sensitivity by varying each parameter one at a time 
and holding all others fixed, because often changes in one parameter effect changes in another; 
that is they are not independent, or worse, are highly nonlinear.  For example, in the cellular Potts 
model, parameters for membrane elasticity, adhesion strength, and chemotactic potentials are 
relative parameters, chosen to reproduce cell-level phenomenology. This type of parameter 
estimation introduces uncertainties into the system. The challenge here is to identify the parameter 
combinations responsible for given results or outcomes. In a particular application, e.g. tumor 
spheroid growth, we can use key model outputs, such as tumor growth rate, necrotic core size, cell 
cycle fraction distribution, to map out the parameter space.  The technique of choice would be the 
Latin hypercube sampling method to quantify the sensitivity of these key model outputs to 
parameter choices. The advantage of this technique is that it can quantify sensitivity by taking into 
account the influence of multiple parameters. We can perform a number of simulations over 
systematically perturbed parameter ranges to statistically characterize key physical parameters. 
We can average these statistical distributions over the course of each simulation and across 
simulations to derive error bars for our statistical descriptions in space and time.  As we obtain 
more sample observations, the variance of the distributions will converge in time. By performing 
a sensitivity and uncertainty analysis of the model's outputs, we will be able to identify key 
parameters that are responsible for most of the outcome uncertainty. One goal is to use this 
information to focus the resources of the bench scientists on team, in order to design experiments 
that provide quantitative data for the most important aspects of the model.   Identifying collections 
of parameter ranges that contribute to a specific system behavior may lead to increased 
understanding of interacting or competing mechanisms, such as cell migration versus adhesion, as 
well as parameter correlations. 
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