

Redox Modification of the Arrhythmic Substrate in Heart Failure

Raimond Winslow, Brian O'Rourke, Natalia Trayanova

Redox Modifications Reactive Oxygen Species (ROS)

- Produced directly or indirectly by the ETC
- Complex regulation by anti-oxidant systems
- Elevated in HF and ischemia-reperfusion
- Target ion several channels, transporters, signaling molecules

Simpler to More Complex Models¹ What Has Driven Our Progression?

- Models are sometimes "simple" only in hindsight
 - Hodgkin-Huxley theory of the action potential
 - Probably not viewed as being simple at the time
 - Was viewed as being mechanistic
- As were H & H, we need to be faithful to the biology and go for mechanism
- Mechanistic models can be both complex (i.e., highdimensional, many parameters) and constrained

How Did This Work Begin?

With Apparent Simplicity - Metabolic Oscillations

O'Rourke et al (1994) Science 265: 962

Model

I_{K,ATP} Model ATP-dependent K⁺ channel Open probability increases with increasing ADP:ATP ratio

Simple ionic models predict AP shortening

Insight into function - AP shortening,

the "metabolic sink hypothesis",

arrhythmia

Ferrero et al (1996) Circ. Res. 79: 208

How Do Oscillations Arise? Not So Simple – Need a Mitochondrial Model

- A framework to address mechanism
- Must model NADH, ATP production
 - TCA Cycle 8 dynamic variables
 - ETC, F₁F₀ ATPase, ANT, CaU, mNCE
 - [Ca_m], [NADH], $\Delta \Psi_m$, [ADP_m]
- 12 ODEs
- Necessary, but not sufficient
- Needed more data on mechanism of oscillations

How Do Oscillations Arise? Key Mechanism (ROS; O_2^{\square}) Starts With Simplicity

 $\Delta \Psi_m$ ROS (superoxide anion) NADH

ROS-Induced ROS-Release Hypothesis

•ROS_m buildup increases ROS release through IMAC

•ROS_i buildup causes regenerative IMAC opening

•Opening of IMAC collapses $\Delta \Psi_m$

•SOD scavenging removes ROS, IMAC closes

<u>Support</u>

•Oscillations ablated by increased ROS_i scavenging, block of IMAC

How Do Oscillations Arise? "Minimal" Model of ROS Oscillation

<u>Model</u>

- •4 new dynamic variables $[O_2^{\square}]_i$, $[O_2^{\square}]_m$, $[H_2O_2]_i$ [GSH]
- •Phenomenological model of $[O_2^{--}]$ production by electron shunt through Complex III
- •"Robust" oscillations, period (Sec to hours) depends on [SOD]

Propagating ROS Waves Model Reconstruction

2D Reaction-Diffusion Model

Need for More Complex Models Does It Have To Be This Complicated?

Ion Circuits Couple Mitochondria, Cytosol, Sarcolemma

Need for More Complex Models Ion Circuits, Redox Regulation in Heart Failure

- [Nai] ☆ in HF (~ 15 mM)
- mNCE extrudes Ca²⁺
- NADH, NADPH \Downarrow
- V_{GR}, V_{GPX}

•
$$H_2O_2 \uparrow$$

O'Rourke and Maack al (2008). Drug Discov Today Dis Models 4(4): 207

Need for More Complex Models ROS Targets

- mNCX extrudes Ca²⁺
- NADH, NADPH \Downarrow
- GPX activity
- H₂O₂ ↑ (~ 20x)

Red shows H₂O₂ action

O'Rourke and Maack al (2008). Drug Discov Today Dis Models 4(4): 207

- Develop models tailored to the questions being asked, using available information on mechanisms
- Sometimes complexity is unavoidable e.g., highly coupled biological processes