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Abstract /l? @ /5

The objective of multiscale modeling is to predict the response of complex systems
at all relevant spatial and temporal scales at a cost that is sub-linear with respect to
the full micro-scale solver [1]. Scale linking is currently performed using
hierarchical [2] and concurrent [3-9] schemes. This global-local type of multiscale
methods [10-20] falls within the category of hierarchical multiscale methods where
the stress-strain relationship at every integration point of the macro-scale is
computed by suitably deforming an associated representative volume element
(RVE). The major advantage of this class of methods is the ability to model arbitrary
nonlinearities at the micro-scale as no a priori constitutive assumption is made at the
macro-scale. In this chapter we will summarize implicit and explicit global-local
multiscale methods, their current developments, challenges and applications to
computational mechanics.
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1 Introduction

Most biological and engineering materials are heterogeneous at certain length scales
and this heterogeneity has significant impact on the macroscopic material response.
For instance, most engineering metals and alloys are polycrystalline with grains of
various orientations. Second phase inclusions and voids add to this heterogeneity.
Advanced forming processes force a material to undergo complex loading paths
leading to evolution of the microstructure. Furthermore, due to the ongoing trend
towards miniaturization of devices, the microstructure is no longer negligible
compared to the component size, giving rise to so-called “size effects”. Composites
are another class of engineering materials which are highly heterogeneous. The
emergence of nanostructured composites with carbon nanotubes or nanoparticle
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fillers has opened up the unique possibility of controlling properties at the mo‘lec[fa/ Gfi [

level where, due to the very high interfacial area, the properties of the polymer
matrix are essentially controlled by the interaction between the chain and the
nanoscale filler. The enhanced properties such as low weight and high energy
absorption of metal foams arise primarily from their cellular microstructure.

In order to create materials, devices, and systems as the ba51s products
and industries, engineers must learn to model and design at the 1§¢ cale
takmg into account the relevant micro structural features. A fu]l ment,

computationally demanding atomistic or ab initio techniques. Hence, robust
reliable multiscale computational strategies are essential to overcome the “tyranny
of scales”.

The goal of multiscale modeling is to take into account the interconnectivity of
the essential phenomena occurring at multiple length and time scales preserving
macroscopic conservation principles. The objective of recent multiscale methods,
which distinguishe them from traditional ones such as multigrid, wavelet, fast
multipole or adaptive mesh refinement techniques, is to capture the macroscale
behavior with a cost which is sublinear compared to the cost of a full microscale
solver. Scale linking is performed using hierarchical, concurrent or a combination
of these schemes. Examples of concurrent coupling methods [3-9] are hybrid
atomistic-continuum techniques in which spatial regions subjected to large local
field variations (such as dislocations or cracks) are represented atomistically, while
the rest of the model is continuum [3-9]. For the simulation of heterogeneous
materials hierarchical multiscale methods are developed where a macroscopic model
exists for a properly selected set of macroscopic variables which need to be
augmented with microscopic computations [2].

The so-called unit cell methods [21] are hierarchical multiscale methods in which
the averaged microscopic stress-strain fields, computed on a representative unit cell
of the microstructure subjected to a predefined loading path, are fitted to
macroscopic closed form phenomenological constitutive equations in a format
established a priori. For non-uniform microstructures, sufficiently large regions
must be considered for analysis. Once the macroscopic response becomes nonlinear
(geometric, material or both), it is extremely difficult to make a well-motivated
assumption on a suitable macroscopic constitutive format.

The mathematical theory of asymptotic homogenization [22-24], which uses
asymptotic expansions of field variables about macroscopic values has been
developed as yet another hierarchical technique for analyzing multiscale response
[11,25,27-30]. The asymptotic homogenization method provides overall effective
properties as well as microscopic stress and strain values. However, the asymptotic
homogenization method suffers from a major limitation stemming from its basic
assumptions, viz. (a) uniformity of the macroscopic fields within each RVE and (b)
local spatial periodicity of the RVE. Hence, this method breaks down in critical
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regions of high gradients such as cracks, free edges, interfaces, neighborhoodsk‘foﬁ~.,‘

material discontinuities and in regions of evolving microstructural damage.

To extend the asymptotic homogenization method to nonperiodic problems,
techniques such as the s-version of the finite element method [31,32], various
multigrid-like bridging scale methods [33,34], an adaptive global-local method
based on the Voronoi cell finite element method (VCFEM) [35], a homogenized
Dirichlet projection method (HDPM) [36,37] and a generalized finite element
method with “mesh-based handbook functions” [38] have been developed. The s-
version of the finite element method is based on the principle of superimposed
meshes [32] and requires cumbrous quadrature techniques. Unstructured multigrid-
like methods require remeshing to capture evolving fine scale features. The VCFEM
is an assumed stress hybrid method in which each heterogeneity is embedded in a
Voronoi cell which is treated as a finite element. For ellipsoidal inclusions, in three-
dimensions, stress functions which are elliptic integrals have to be approximately
evaluated [35] and the method becomes intractable for complex 3D realistic
microstructures. The homogenized Dirichlet projection method resolves the
microstructural effects at different scales using an adaptive approach. An ¢normous
number of local boundary value problems have to be solved to Qi'n}ble the-
handbook function in [38] making the method rather impractica fTor / éghefdl

'
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To overcome problems associated with existing methods, a promising class of
techniques is being developed to allow multiscale computations of problems
involving arbitrary nonlinearites at the micro and macro-scales for general
nonperiodic microstructures. These so-called “global-local” methods [10-12,15-
17,20,26,35] do not lead to closed formed overall constitutive equations, but
compute stress-strain relationship at every point of interest of the macro-component
by detailed modeling of the microstructure attributed to this point. These techniques
may be either explicit or implicit in nature. An explicit time marching algorithm is
used in the explicit global-local methods to propagate the solution. In the implicit
version, a Jacobian algorithm is necessary, which, of course, cannot be computed
due to a lack of a closed formed constitutive expression at the macroscale.

For realistic problems with complex microstructures, not having to explicitly
compute and store the Jacobian matrix at every Newton step is a major advantage in
terms of storage requirements and computational cost compared to previous efforts
based on homogenized material coefficients [12-14,19,35], condensation of the
microscopic representative volume element (RVE) finite element stiffness matrix
[15,20,39,40], and finite difference approximation of the material tangent matrix
[16,18,40].

For the dynamical system an equation-free multiscale [41,42] has recently been
proposed. Though the general philosophy of the equation-free approach is similar to
that of the heterogeneous multiscale method [1], it differs in ways of dealing with
the scale separation i.e. to use extrapolation in time and interpolation in space. If
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micro-macro coupling is done within the framework of the Jacobian-free Neé{k{n (/ j1

Krylov method, the explicit formation of a Jacobian matrix can be avoided. Such
Jacobian-free methods have been proposed recently to compute the macro-scale
response of systems that allow clear scale separation by performing a sequence of
micro-scale computations at each integration point of the discretized continuum
[43]. However, the efficiency of this Jacobian-free multiscale approach depends on
efficient preconditioning of the resulting Krylov subspace solver.

This chapter is organized as follows. The general global-local multiscale
computational strategy is summarized in Section 2. In Sections 3 and 4 we outline
the essence of explicit and implicit global-local multiscale methods. The issue of
computational efficiency has been discussed in Section 5. Here we mainly focus on
the coarse-grained parallelization techniques and matrix preconditioning strategy for
the Jacobian-free multiscale method. In Section 6 we conclude with a discussion on
existing techniques and an outlook for the future.

2 Global-local Multiscale Methods

A basic assumption of global-local methods is that clear scale separation exists. An
example is a structural component model of a material that possesses an intricate
spatial heterogeneity at a length scale small with respect to the structural dimensions
but large with respect to atomic dimensions. Hence, the macro-scale may be
modeled using continuum mechanics, while the micro-scale is modeled using an
RVE, which may vary from one point of the macroscopic domain to the other. We
review below the macroscopic and microscopic level continuum models along with
the global-local solution strategy.

Figure 1: Macro-micro hierarchical multiscale computation strategy




2.1 Macroscale Problem

We consider a macroscopically homogeneous, but microscopically heterogeneous
body which occupies Q, e R?; d €{1,2,3} in the reference configuration that deforms

to Qe R? following the map
x=¢(X,1) 1)

where X and x are points in the reference and deformed configurations, respectively,
and ‘¢’ denotes time. For simplicity, we assume a total Lagrangian approach [44] in
which the weak form of the governing equilibrium equations of elastodynamics at
the macroscopic level may be stated as:

Find u=(x-X) eHl(Q0 x (0,T)) such that

-0
[ oF":PdQ=[ su'b’dQ+ [, ou"t T @)
Q, 0 T, P
ey /: DN
Satisfying; Jod ’i A T I ,
"L'; ¥ ,'K ""!" H f ; ’ &é ,'l;:~ "
u=1 onI?’x(0,T o tUF aY e
% (0.1) SRGYE
u(x,t=0)="u on Q, 4)
i(x,7 = 0) =@ on Q, )

whereQ, is an open bounded domain with boundary I’ =T7UT); TP NT9=0

(Figure 1) in the reference configuration; F is the deformation gradient tensor; P is

the first Piola-Kirchhoff stress tensor; b° is the body force per unit reference volume
(including inertia forces); t is the surface traction on the macroscopic boundary o

and H'is the first order Hilbert space. We will not define any constitutive equations
to close this system.

2.2 Microscale Problem

Associated with each macro-scale point X is a mirco-scale representative volume
element (RVE) which is assumed to deform from reference configuration ¥, € R to

V eR? (Figure 1) following the map
y=¢(Y,?) (6)

where Y and y are points in the reference and deformed configurations of the RVE.
The RVE is assumed to be free of body forces and the corresponding weak form is:

Find w® =(y-Y) e H'(V,) such that

L, SFT P°dV, = 0 (7
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where a suffix of ‘e’ denotes microscopic quantities. F* and P* are the miéfoscdpig/ /.. /
deformation gradient tensor and first Piola-Kirchhoff stress tensor, respectively. The -
micro-scale system of equations is closed by known constitutive response of the
constituents. Observe that there are no body forces acting on the RVE. Explicit
constitutive equations are necessary for the micro-scale constituents to close the

system of equations.

2.2.1 Choice of RVE
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The RVE corresponding to a material point (x) in the continuum is a*‘maftérfal{;ff [";"5
volume which is statistically representative of the infinitesimal material
neighborhood of the material point. In this case, the size of the RVE is determined

when the condition of statistical homogeneity is satisfied for all state variables [45].

Also, it should include only those dominant constituents that have a first order

influence on the material properties of interest and that yield the simplest model.
However, the choice of the RVE is non-trivial as discussed in detail in [46-48]. Here
it is assumed that a choice has already been made and there are no body forces
acting on the RVE. f\ .

2.2.2 RVE Boundary Conditions

The microscopic stress and strain fields may be obtained by solving the boundary W /7
value problems for the RVE with prescribed displacement/traction or periodic
boundary conditions obtained from the macroscale problem, stated as:

Prescribed displacement. 'y =F(x)Y for Y edV, (8
Prescribed traction: t="P(x)" N (Y) for Y edV, 9
Periodic: y* -y =F(Y"~Y") for Y ed¥, (10)

where F and P(x) are the deformation gradient tensor and first Piola Kirchhoff stress
corresponding to the point x in the macroscale to which the RVE is associated and
No(Y) is the unit outward normal to the RVE boundary in the undeformed
configuration at a point Y. In the periodic boundary condition case the RVE

+ - + _ -
boundary is split into two parts %" and 9% such that No =—No~

In the next section we will show that corresponding to the prescribed
displacement and periodic boundary conditions the volume averaged deformation
gradient tensor within the RVE is F, whereas, corresponding to the prescribed
traction boundary condition, the volume averaged stress in the RVE is P(x).

In [49,50] it is observed that the periodic boundary conditions provide a better
estimation of the overall properties than the prescribed displacement/traction
boundary conditions. Contrary to the assumption of global periodicity, in [20] the
periodic boundary condition implies a “locally periodic” microstructure in the



immediate vicinity of the individual macroscopic points. The microstructure may
therefore have different morphologies at different macroscopic points.
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2.3 Macro-Micro Coupling P R @ ULJ

The macroscopic computations at any point x provide the boundary conditions to the
RVE associated with that point through the deformation gradient tensor (F) [10-14].
For the prescribed displacement boundary condition as in Equation (8), the volume
average of the micro-scale deformation gradient tensor is:

F

<F5>=|;—0|LOFEdV:ﬁLVOy@@NdS:‘—VO—‘_[WOY®NdS=F (11)

where N is the unit outward normal to the RVE in the reference configuration
(Figure 1). The volume averaged microscopic stress

(p°) =|;—| L PedV, (12)

is returned to the macro-scale as the stress corresponding to the point x, i.e., P.

2.4 Computation of Effective Moduli: One-Dimensional Example

Consider a model 1D bar:

%(E*%]=O; Vx e (0,1) (13)

Satisfying Dirichlet boundary condition:

u(0) = O;u(l) = & \PR F (14)

E2
oY——(l-q)y — 7
r Y il

Figure 2: (a) Heterogeneous bar of unit length; (b) the RVE
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2.4.1 Global-local Multiscale Approach

Assume the simple RVE of the following form with Dirichlet bc:

d du )
d_yE(y);ﬁv-:O’ vy €(0,1) (15)
uy=0)=0u(y=0)=u* (16)

Integrate once:

du du D
E(y)—=D =»>—=—— (17)
dy dy E(y)
L‘ By [ 2 (18)
E(y)
sy’ —0=D| X412 (19)
El EZ
u‘
> D=— 20
(e 1-a) 20)
L El EZ
Hence, the average strain in the RVE L ” o
d - . L f:':s" -
= [“ay J: [ i “}=u @1
ay E(y) E K
The average stress in the RVE
jE(y) T (22)
‘b’ a l-a
El EZ
Since,
d
o=E(y) =D 23)
dy

The effective modulus is therefore

-1
E = [% + 1;“] which relates (o) = E' (&) (24)
1 2



2.4.2 Asymptotic Homogenization
If the displacement field u(x) has periodicity Y, it can be approximated in terms of
macroscopic and microscopic spatial coordinate x and y = x / &, such that:

u(x, y(x))=u(x,y)=u(x,y+kY);k=1,2... (25)

where 0<e<<1 denotes the size of the unit cell or period. Here we are assuming that
E(x) is an oscillatory periodic coefficient. Now, consider the following asymptotic
expansion of the displacement field u(x,y):

u(x, y) = u,(x, ) + eu,(x, ) + £u (x,y) + O(&”) (26)

Substituting the asymptotic expansion of u(x,y) into the above equilibrium equation
yields equilibrium equations:

0 ou :
e —|E—=21=0 27
(£7) ay[ ay} (27)

The leading order equilibrium equation suggests that the leading order term in the -~
asymptotic hierarchy is the function of macroscopic coordinate alone i.e. uy(x).

-, O ouy auo -
O™): ayE( )[ay ax]—o (28)
Integrate once:
ou, , oy )
E(y)( & * } ¢, (x) (29)
Integrate over RVE and by exploiting periodicity it gives:
Ou
() =—2 30
a(x)= [ [—— %5 ] (30)
o | 1 (11 Y . |ou
s B — 1= 31
e {E(y)[YJE(y)dy ] ax b
oy, 0 Ou, Oy | g ou, aul _
O(e ).ay[E(y)( % + P J_+ax[E( )[ = o H 0 (32)

Integrating over RVE, dividing by Y and exploiting periodicity yields:

et LY oul|
—cl() {[ I )d] ax}_o (33)

Hence the homogenized material property is:
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This is the same elastic constant as in case of global local multiscale computation in
the previous section when periodic boundary conditions are applied.

PROOF
3 Explicit Global-Local Multiscale Methods

To solve the weak form at the macro-scale (Equation (2)), we assume an
approximation using finite elements

u(X,7) = HX) U(r) (35)

where H(X) is the shape function matrix expressed in terms of the reference
coordinates [44] and U(?) is the vector of nodal displacements. Hence, Equation (2)
results in the discretized set of equations

MU=R-3 (36)

where M is the mass matrix, R is the vector of externally applied nodal point loads
R= [ H'b°dQ,+ [, HEdI (37)

where b’is the body force per unit reference volume excluding inertia forces. In
Equation (36) 3 is the vector of nodal point forces corresponding to element
stresses

- PROOF

B(X) = VH(X) (39)

The solution of the nodal point displacement at time ‘z+A#’ is obtained using an
explicit time integration scheme, such as the central difference method [44], for the

acceleration (U ) in Equation (36), i.e.,

123 1 t-At t 1+At

U—F( U-2'U+ ") (40)
If a diagonal mass matrix M =diag(m,)is chosen, the solution corresponds to a
forward marching in time, where each component of the displacement at time “* U,
may be directly computed in a matrix-free manner as
A? (
m,

1

MU, =2'U, MU, +—('R-'S,) i=12,.., NDOF (41)



where ‘NDOF ' is the total number of degrees of freedom of the macro-scale model.

In the finite element method, the right hand sides of Equations (37) and (38) are
computed using Gauss integration, e.g.,
r NGAUSS r
e~ ot o ot
3= LOB  'PdQ, ~ I; Wy (B P)x=le (42)
where NGAUSS is the total number of Gauss quadrature points in the finite element
model, W;p and X;p are the integration weights and points, respectively. At each
macroscopic Gauss point, the deformation gradient tensor is computed and is used to
apply boundary conditions to the RVE as in Equation (8). The resulting stress is
volume-averaged on the RVE to compute the stress at the macro-scale using
Equation (12). The steps involved in the sequential explicit global-local model are
summarized in Algorithm-1.

Algorithm-1: Explicit global-local multiscale model

1 for each time step t — ¢+ At
2 for each macro-scale Gauss point

Compute ‘F=1+B ‘U
Solve the micro-scale problem with bc y =* FY for P*
Compute ‘P = <P5>
end for
Compute ‘3, ‘R
Compute the displacement at time ¢+ Az
At

t+AtU=2tU_t—At U+_(IR_IS)
m..

il

3
4
5
6
7
8

9 end for

4 Implicit Global-Local Multiscale Methods

In this section we briefly present the essence of an implicit multiscale method for the
solution of BVP problems in computational mechanics. Using the following finite
element discretization of the displacement field at the macroscale

u(X) ~ H(X)U (43)

where H(X) is the matrix of shape functions matrix expressed in terms of the
reference coordinates [44] and U is the vector of nodal displacements, the
discretized form of Equation (2), after incorporating the Direchlet boundary
conditions, is

Find U e R"such that

FU)=f-dU)=0 (44)



where ‘n’ is the number of degrees of freedom of the macroscale problem; f 1s;thc 7

vector of externally applied nodal point loads

f= Lﬂ Hb°d0, + L? H't dI (45)
and ®(U) is the vector of internal forces corresponding to element stresses

O(U) = Lﬂ B’ :PdQ, (46)
where B(X) = V,H(X) is the strain-displacement matrix.

The solution of Equation (44) using Newton-Raphson iterations involves finding
the Newton directions SU* at every Newton step by solving the following equation

J(U"SU* = ¢ (UY) 47)

In this equation, J(U*)is the Jacobian

AU*)  apUh) :_L B oP* JOE*

J(UY = : =
v Ut ou* OEF " oU*

0

where Ef = %(F"TF" —I)is the Green-Lagrange strain.

In a multiscale problem, the constitutive equation at the macro-scale is unknown
and therefore the Jacobian cannot be computed in closed-form. In Section 4.1 we
review some of the existing approaches of Jacobian approximation, whereas, in
Section 4.2 will present the essence of the Jacobian-free multi-scale model that does
not require an explicit Jacobian formation to solve the resulting macroscopic
problem.

4.1 Jacobian Computation Strategies

In literature various methods have been proposed to deal with the computation of the
Jacobian at the macroscopic scale. In the following sections we will discuss four
classes of methods which are found in literature.

4.1.1 Techniques Based on Condensation

One class of methods for approximately computing the global Jacobian matrix is
based on condensation of the microscale finite element stiffness matrix or material
tangent modulus [15,20,26,39,40]. For example in [20] at each of the macroscopic
integration points the consistent stiffness matrix is derived by reducing the total
RVE stiffness matrix to the relation between the forces f, acting on the retained
vertices of the RVE and the displacements u, of these vertices, where, subscript ‘p’
stands for prescribed quantity. For the first-order gradient based approach, when the

(48)

LR 4
p




RVE is deformed under prescribed boundary displacement, Equation (??), this
relation is

K, du, =5f 49

where K, is the condensed RVE stiffness matrix. Equation (49) is used to derive
the consistent tangent at the macroscopic integration point. From Equation (12)

<P‘ J’/ P°dV,

:ﬁ J'/ [VY-(P‘ )T ®Y+(P‘)T V,{Y}JIV0 [(50)

1 “

=WL%(PE)TN®YdSZﬁL%fP®YdS "'VY'(PE)T=0a.ndVYY=1 “ oL

For the case of prescribed displacement boundary conditions and using Equation
(49) the variation of (P‘) then leads to:

< W |L Sf, ® YdS
0

|V|L K, 6u, ® YdS

(1)
= W LVO K, SF(Y®Y)dS - du,=0FY

LC
L |L Y®K,, ®YdS} - 6FT
0

where the superscript LC stands for ‘left conjugate’. From Equation (51) the
consistent tangent L is identified as:

LC
L=[ﬁ LV0Y®KM®YdS} (52)

Higher order gradient-based approach

A higher order gradient-based global-local multiscale method has been outlined in
[51] and motivated by modeling the microstructural size effect. This uses a gradient
second-order equilibrium problem at the macroscale, while the microscopic
equilibrium problem follows classical continuum theory. In this approach, the RVE
kinematic boundary condition is determined by the combination of macroscopic
deformation gradient tensor F and its gradient V,F. The macroscopic first Piola-

Kirchhoff stress tensor P and the higher-order stress tensor Q is then derived using a
modified Hill-Mandel condition [51]. The latter can be interpreted as the first



moment, with respect to the RVE center, of the microscopic first Piola-Kirchhoff
stress tensor P¢ over the initial RVE volume V,

Q=%L)(Pfj®Y+Y®PEdVO (53

The macroscopic consistent tangent derivation is based on similar ideas outlined for
the first-order gradient-based approach.

4.1.2 Techniques Based on Asymptotic Homogenization

For the small-deformation and locally periodic microstructure, the -classical
asymptotic homogenization based global-local approach is used to obtain the
homogenized material coefficients to form the macroscopic consistent tangent
matrix [12-14,19,35]. Here, it is assumed that the Y-periodic microscopic
displacement is linear with respect to the macroscopic strains, i.e.

ou; (x)
ox

u(y=x/5%)=2"(y) +¢(x) G4

h
where "(y) is a Y-periodic function representing characteristic modes of the

microstructure, ¢(x) is a constant independent of y and ‘¢’ is the perturbation
parameter. Under these assumptions the homogenized tangent modulus is

_ L e . f4 ‘ ’
L_|Vi [RE .(I+Vyz)iV (35)
where “I is the fourth-order identity tensor.

4.1.3 Techniques Based on Finite Difference Approximation

The consistent tangent moduli can be computed numerically by using forward
difference approximation of the material tangent modulus [16,18,40] as:

ijk — 5PU

i 1 i ij
L . ;[P’(F,d +1e, ®¢,)—P(F,) ] (56)

where the perturbation parameter 7 is used to compute the perturbed macroscopic

deformation gradient. The indices (i) and (k/) correspond to the rows and columns
of the corresponding L matrix in Voigt notation. The quality of approximation in
Equation (56) largely depends on the choice of the perturbation parameter 7.

Possible choices of 7 and the corresponding error estimate are discussed in [52].

4.1.4 Techniques Based on Newton-Krylov Approximation

In the Jacobian-free multiscale method [42,43], Equation (47) is solved iteratively to
approximately find the Newton directions



SUL =5Uf +Vizh (57)

where ‘m’ denotes the Krylov iteration step, SUfis the initial ess (usually
assumed 0), and V:eR™ is the ‘Krylov matrix’> whose céluﬁn;ts‘ “‘are VVVVV .the

orthonormalized Krylov vectors (v ), Le.,

‘ o {444
vi=[v], ., with (v}) v =, (58)
If the generalized minimal residual (GMRES) algorithm is used [53], then in
Equation (57) z* is computed by solving the least squares problem

fre, ~ Hyzy | (59)

mm
z eRr™

where H* e R is a rectangular upper Hessenberg matrix whose entries are

T
o (vf‘) IVE g+l
" 0 i>j+1

with J* =J(U*). e,is the unit vector with ‘1” as its first entry and j =||r,|| where

(60)

r, = J(U*)SU; + ¥ (U¥) ()
is the initial residual.

At the heart of the GMRES algorithm is the Arnoldi factorization

kak Vka + hk+1 m m-i-le (62)

which allows the computation of the component 4, . of the upper Hessenberg

m+1,m

matrix and the (m+1) Armoldi vector v by performing matrix-vector products

involving the Jacobian matrix and the previous Arnoldi vector according to the
following relationships

hp,:,+1 =V = thmvk (63)
k=1
Iy, - Z P Vi
vE o= k=1 64
m+1 hm+1,m ( )

Since the Jacobian matrix (J*) is not explicitly computed, the matrix-vector product
in Equations (63) and (64) is approximated using the following finite difference
approximation [54]




=aP(U")v =_0'ID(U")V z_<I>(U"+¢9vm)—q>(U")

Jk
vm ﬂ]k m ﬂ]k m 0

(65)

where 0 is a scalar perturbation parameter. It has been shown in [5254] that an
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optimal choice of @is [y

e el
v

mliz

where fypU* is a user-supplied “typical size” or “scaling” of components of U,

|Vm| = [|vm1

computed by applying suitable perturbations to the micro-scale RVE.

,...,lv HT and e is the machine epsilon. ®(U* +@v ) in Equation (65) is

m’l

4.1.4 Comparative Analysis

If we compare the consistent tangent modulus computation using an asymptotic
homogenization based approach with the rest of the approaches outlined above, it is
evident that the former is limited to small deformation problems with locally
periodic microstructures. The condensation-based approach is computationally
efficient, however, its success relies on the choice of the prescribed boundary nodes,
which may not be a trivial task in three-dimensional analysis. The numerical
computation of the consistent tangent moduli using the forward difference
approximation is more accurate, however, it may not be as computationally efficient
as the condensation-based approach. The Newton-Krylov based implicit
approximation scheme is efficient for realistic problems with complex
microstructures. Not having explicitly to compute and store the consistent tangent
moduli is a major advantage of this method in terms of storage requirements and
computational cost compared to the other methods outlined above.

S Computational Efficiency

The existing global-local multiscale computational methods, e.g. using finite
element discretization at both the macro- and micro-scales, are intensive both in
terms of computational time and memory requirements. For these methods to be
widely used in the solution of practical problems it is important to ensure both the
efficiency and reliability of these methods. While there has been excellent progress
in the development of multiscale methods, the issue of efficiency has not received
sufficient attention. In Section 5.1 we review an efficient coarse grain parallel
scheme for global-local multiscale methods [55], while, in Section 5.2 we present a
block preconditioning strategy that accelerates the convergence of Jacobian-free
multiscale methods.
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5.1 Coarse-Grained Parallel Algorithms !

RtV
The coupled macro-micro computation in the global-local multiscale problem po(§‘é‘§ :
severe computational bottleneck. Traditionally, this issue is addressed by adopting it
to the domain decomposition based parallel algorithm, which is originally designed
for the finite element computations [18, 56, 57]. In [58, 59], a multi-level parallel
algorithm is developed for an adaptive multi-scale finite element model. Departing
from the traditional approach, in [S7], two stages of micro-scale computations for
the tangential homogenization and the microscopic self-equilibrium are proposed to
distribute on the set of a PC-cluster while the macro-scale computation is performed
on a single processor.

The major limitation of the domain-decomposition based approach is the
sequential computation of the microscale problem on the processor assigned to a
particular sub-domain. It also suffers from an extensive communication overhead
across the sub-domain, which inturn limits the maximum degree of concurrency that
can be achieved. To overcome these issues, in [57], the macro-scale problem is
computed sequentially on a single processor, whereas the micro-scale problem is
distributed among the rest of the available processors. This approach eliminates
some of the shortcomings of a domain-decomposition based approach at the cost of
extensive communication within a larger group of micro-layer processors and their
idling due to sequential computation of the macro-scale problem.

The matrix-free global-local approach requires computation of the vector of nodal
point forces corresponding to element stresses that may be performed using the
volume averaged RVE stresses. This eliminates the need for specialized graph
partition techniques that inturn minimize the communication overhead. The matrix-
free architecture is particularly suitable for mapping two scales of a global-local
multiscale model on a massively parallel platform (MPP). This is because of its
innate requirement to compute the micro-scale problems on the micro-layer
processors in a coarse-grained sense at optimal cost to macro-micro communication.

We have developed algorithms for parallelizing both implicit and explicit [55]
matrix-free global-local multiscale methods. Taking advantage of the hierarchical
nature of the macro-micro computation, we distribute the groups of macro-scale
integration points to one layer of processors. In this layer processors communicate
locally with a group of processors that are assigned for the micro-scale
computations. The macro-scale problem is decomposed using logical hierarchical
topology developed in ref. [55]. This type of decomposition ensures equal
computational load sharing among a macroscopic group of processors, each of
which overlaps and hence communicates with a local group of processors in the
microscopic layer without any specific need for an inter-group communicator.

5.2 Preconditioning Strategy for Jacobian-Free Multiscale

In implicit global-local methods which use iterative solvers [42,43,60], considerable
advantage may be gained by using a preconditioner. In [42], a physics-based left




preconditioner is developed to accelerate the GMRES iterations, which is based on a
central finite difference time-stepper approximately to represent the coarse scale
model. In [60], a two-level coarse grid correction preconditioner is used to correct
the non-converging and slowly converging low-frequency eigenmodes. However,
these techniques may still require Jacobian approximation at some level for
preconditioning the Krylov subspace solver.

For Jacobian-free multiscale methods, it is desirable to develop a preconditioner
which is efficient, yet general enough to be independent of the physics of the
problem being solved. Such a preconditioner should accelerate the convergence of
the Newton-Krylov process without incurring an additional computational overhead
at the micro-scale, i.e., without explicitly computing the Jacobian at any of the
Newton steps. We have developed a block right preconditioner [43] that effectively
deflates the spectrum of the Jacobian matrix corresponding to the current Newton
step by using information from the Krylov subspaces spanned by a few of the
Arnoldi vectors corresponding to the previous Newton steps and the representation
of the Jacobians on those bases. In principle, this is based on the strategy presented
in [61] for a restarted GMRES. Notice that this method does not involve explicit
Jacobian computation at any Newton step. This preconditioning strategy is powerful
as each block in the preconditioner results in an eigenvalue of the preconditioned
Jacobian matrix with multiplicity, which is at least equal to the dimension of the
respective right invariant subspace. However, the effectiveness of the preconditioner
depends on how close the respective blocks in the preconditioner estimates the
eigenvalues of the current Jacobian matrix. We will briefly describe this
preconditioner in the following paragraphs for a linear system

Ax=b [ o (67)

which is solved using GMRES. At the m" step of the Arnoldi procfﬁs; tl;ie matrlx A
permits the factorization [53]

Vv,

m+1

TAV, =H,, (68)

where V., e R™™Dand V, eR™ are Krylov matrices with orthonormal columns
and H,_ eR"*""is an upper Hessenberg matrix which permits the following QR-
factorization

I_.im = QmRm = Qm+1§m (69)

where R_ eR™ and Q, eR“*"™is proper orthogonal. In Equation (69)
§m=(Rm;0) is obtained by inflating R, with an extra row of zeros and

Q IER(MH)X(MH)
m+ *

The basic idea in preconditioning is to solve the preconditioned set

AM™'y =b (70)



Mx =y (71)

instead of the original one in Equation (67). For the (k+1)" Newton step, the form of
the right preconditioner is

o0 <+ 302 (o (R ) (@ ) (@) 1 }(0) 2
j=0

which uses information not just from step ‘£’, but from all previous Newton steps. In
this equation, ‘m;’ is the number of GMRES iterations for convergence in Newton

step /°, V/ . is the Krylov matrix, Ri,, ande,',j+1 are the QR factors of the

m; +1

. . o/ (m; +)xm
corresponding upper Hessenberg matrix H’ eR™"™7", a;eR,a;#0, and

J

I, e R™ is an identity matrix. The action of the block preconditioner in Equation

(72) increases the multiplicity of 4+1’ eigenvalues of the preconditioned Jacobian
matrix at Newton step ‘k+1°by my, my ..., my, respectively.

6 Concluding remarks

The ability of global-local multiscale methods to model arbitrary nonlinearities
at the microscale without making a priori assumptions regarding local periodicity
makes them powerful techniques for the solution of a large class of problems in
science and engineering. Their applicability, however, is limited by the
computational cost as well as memory requirements. For these methods to be applied
to realistic problems, it is therefore important to ensure both efficiency and
reliability. Advances in parallel computational technology, efficient preconditioning
strategies and other acceleration techniques must be pursued to ensure efficiency.
Multiscale error analysis, as well as studies related to numerical stability are also
necessary to lay the foundations of reliable global local multiscale technology.
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