NIH Integrated Multiscale Biomaterials Experiment and Modeling Group

Collagen & mineralized collagen modeling

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics , Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA

E-mail: <u>mbuehler@MIT.EDU</u>

February 10, 2014 Support: NIH U01

Collagenous tissues – a (t)issue of multiple scales

M.J. Buehler, PNAS, 2006; R. Ritchie, M. Buehler, P. Hansma, Physics Today, 2009; Ann. Rev. Mat. Sci., 2010

Integration of experiment and computation

Three-pronged research approach: "materiomics"

- 1. Simulation and experiment of different systems
- 2. Generalize insight through comparative study
- 3. Analytical models, mathematical tools

Buehler et al., Nature Materials, 2009;. Z. Qin et al., 2010, 2012

Pulling on a single collagen molecule

Advancement in experimental equipment: Have quantitatively confirmed predictions from our simulations

Sun et al., J. Biomechanics, 2004; Buehler and Wong, Biophys. J., 2007

Full-atomistic 3D model of collagen fibril

Collagen fibril mechanics—structure

67 nm, D period

Model features key structural features of collagen fibrils, <u>in particular D-banding;</u> Consider atomistic and coarse-grained representation

Gautieri, Redaelli, Buehler et al., Nano Letters, 2011

Mineralization approach

Successive addition of mineral crystals into collagen fibril; different cutoff yields different mineral density (0%....40%)

A. Nair, S. Chang, M.J. Buehler, et al., Nature Comm., 2013

Hydroxyapatite distribution

Hydroxyapatite is <u>predominantly present in gap region</u> (30-40 nm of the D-period) consistent with experiments.

Experimental results: Nudelman, Nature Mat., 2010

Mechanical testing

- Load applied to unit cell using *NPT* ensemble.
- Computational time:
 0.2 ns/week for 40% case (each data point = several months

A. Nair, S. Chang, M.J. Buehler, et al., Nature Comm., 2013

Coarse-grained collagen fibril model

Coarse-grained collagen fibril model

Coarse-grained collagen fibril model

Failure of mineralized collagen under mechanical loading

B. Depalle, M.J. Buehler, et al., in prep.

Mineralized collagen fibril: comparison with experiments

CG model stress-strain response for different mineral density

B. Depalle, M.J. Buehler, et al., in prep.

Tensile test on mineralized collagen fibrils (Hang, 2011 J. R. Soc. Interface)

SAXS results for antler (no extrafibrillar mineralization) (Gupta, 2013 JMBBM)

