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1. Encoding models describe the functional relationship between an auditory 
stimulus and time-varying neural response.

9. References

3. A peek inside a population encoding model

4. Interpreting feature selectivity of DNN-based models
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Linear-nonlinear (LN) STRF

Deep neural network (DNN)

Dynamic spectro-temporal receptive fields 
(dSTRFs) describe a multidimensional 
tuning space [1]. A. Natural stimulus 
spectrogram presented during recording 
from one A1 neuron. B. PSTH response with 
prediction by LN model overlaid. LN STRF 
appears at right. C. Prediction by DNN 
model to the same stimulus captures more 
details in the response timecourse. D. 
dSTRF is a linear STRF, computed at each 
point in time from the Jacobian of the DNN 
model. E. dSTRF projected onto principle 
components, computed over the entire 
timecourse of the dSTRF. Fluctuations 
correspond to shifts in linear tuning.
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No difference, n=181

LN prediction correlation
(mean 0.388)

C
on

v1
D

x2
 p

re
di

ct
io

n 
co

rr
el

at
io

n
(m

ea
n 

0.
47

2)

A1

L

L

N

N

L N

r1L N

r2L N

rNL N

r3L N

r4L N

. . .

. . .

L1 LN-like 
input filters L2 densely

connected units

. . .

. . .

Additional
dense layers

{ { {
0 0.5 1 1.5 2 2.5 3 3.5

0

25

50 actual
Conv1Dx2 prediction

0 50 100 150 200 250 300 350
−0.1

0.0

0.1

P
C

A
 p

ro
je

ct
io

n PC1
PC2
PC3

0 100

Frame 52 Frame 54 Frame 56 Frame 65 Frame 133 Frame 165 Frame 215 Frame 220 Frame 233 Frame 240 Frame 250

0 100

PC 1

1 sec

Stimulus spectrogram

2. Do deep neural networks outperform traditional encoding models for 
single-unit data in auditory cortex?

64-channel laminar 
microelectrode arrays 
record activity of a local 
neural population across 
cortical layers [2].

s

The linear-nonlinear (LN) STRF and 
related models describe encoding 
properties with a spectro-temporal 
filter. Additional elements account 
for biological processes such as 
short-term plasticity (STP) and can 
improve performance [4].

Deep neural networks (DNNs) and 
related machine learning-based 
models use a large cascade of LN 
filterbanks without mimicking a 
specific nonlinear process [1]. The 
number of layers and size of each 
layer can be varied to accomodate 
the available data.

The Neural Encoding Model System (NEMS, 
http://github.org/LBHB/NEMS/) permits direct 
comparison of mulitple sensory encoding models. 
Here, we compare the ability of LN and DNN 
models to predict responses of neurons in ferret 
primary (A1) and secondary (dPEG) auditory 
cortex to a large library of natural sounds. Models 
were fit using a TensorFlow backend and were 
tested using cross validation. To leverage 
statistical power, we developed a population 
encoding model, a DNN that predicts the activity 
of multiple neurons presented the same stimuli 
and representing a common stimulus subspace in 
intermediate layers.

Population encoding model
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A better encoding model produces 
a more accurate prediction of the 
time-varying neural response.

For this A1 model, activations are sparse in 
early layers, especially L1.

5. Population models consistently outperform LN models 7. Invariant coding of time-dilated speech

6. DNN models for human ECoG during speech perception

Cross-validated prediction accuracy 
is consistently higher for DNN-based 
population models than LN models 
in A1 and dPEG.

Pareto analysis compares population 
models with variable layer sizes (L1, L2 
in panel 2) and LN models with 
variable rank. Population models 
perform better than LN models, even 
when the number of parameters per 
neuron are the same. Models with two 
layers of 1D convolutional filters 
(Conv1Dx2) perform best among 
architectures tested so far.

DNN>LN, p<0.05, n=143
No difference, n=302
DNN>LN, p<0.05, n=384

NEMS permits visualization of 
Input layers for 1D convolutional 
models look like traditional 
STRFs.

Color of lines connecting nodes 
between layers indicate weights 
(yellow/green: +1, blue: -1).

Improved prediction accuracy 
over the LN model for most units.
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A. Stimulus

B. LN model

C. Population 
model

D. dSTRFs

E. dSTRF PCA 
projection

8. Summary & conclusions
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● The Neural Encoding Model System (NEMS) can characterize neural auditory coding 
properties using complex natural stimuli and across a range of recording modalities.

● Deep neural network (DNN) models are able to describe single-unit and ECoG 
responses to natural sounds consistently better than LN models.

● Dynamic STRF (dSTRF) analysis reveals a spectro-temporal tuning subspace for each 
neural response.
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● A population encoding model that simultaneously describes activity of multiple neurons in a local 
circuit performs consistently better than traditional LN models and DNNs fit to single neurons.

● DNN models fit to neural data can be interrogated to study complex nonlinear properties such as 
invariance to temporal dilation of acoustic stimuli.
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A. High-gamma LFP signals were collected from 
human primary (HG) and non-primary auditory 
cortex (STG) during presentation of continuous 
speech [1]. B. Comparison of LN and DNN 
models. C. Example dSTRFs. D. dSTRFs reveal 
complex nonlinear tuning, especially in STG.
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C. Example nodes from ASR model

D. DNN node integration times adapt to dilated speech

Random DNN
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B. 

A. Temporal context invariance (TCI) analysis 
varies the length of adjacent sound segments 
(context) to measure the time period over which 
stimuli modulate neural activity [5]. B. 
Cross-context correlation indicates degree of 
TCI for a neural signal over given segment 
duration. C. Example cross-context correlation 
over varying segment durations for an early 
layer node (top) and late layer node (bottom) in 
a DNN trained on ASR. D. Ratio of change in 
TCI duration for nodes in successive layers 
between presentation of normal speech and 
1.4x dilated speech. Blue show same analysis 
for a randomly initialized network. Ongoing 
experimerments are investigating dilation 
invariance in DNN models fit to ECoG data.
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