Using Deep Learning to Understand Emergent Sensory Coding in Auditory Cortex
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1. Encoding models describe the functional relationship between an auditory 4. Interpreting feature selectivity of DNN-based models
stimulus and time-varying neural response.
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Dynamic spectro-temporal receptive fields

(dSTRFs) describe a multidimensional

tuning space [1]. A. Natural stimulus
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A better encoding model produces r(t)=H[s(x,?)] H[s(x,1)] model. E. dSTRF projected onto principle
?more agcurate plredlctlon of the components, computed over the entire
ime-varying neural response. . timecourse of the dSTRF. Fluctuations

Frarﬁe 52 Frame 54 Frame 56 Frame 220 Frame 233 Frame 240 Frame 250 . . . .
. - correspond to shifts in linear tuning.

N

T
<F-----
-

Spikes /s

2

70

D. dSTRFs

o N
| I I |

.

Inuput
frequency (kHz)

2. Do deep neural networks outperform traditional encoding models for
single-unit data in auditory cortex? = 4STRF PCA
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The linear-nonlinear (LN) STRF and  Linear-nonlinear (LN) STRF 64-channel laminar
related models describe encoding « T microelectrode arrays
properties with a spectro-temporal record activity of a local Input layer (4)
filter. Additional elements account neural population across
for biological processes such as cortical layers [2].
short-term plasticity (STP) and can ~ D€ep neural network (DNN)

improve performance [4]. L] —
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A. Temporal context invariance (TCl) analysis A.Segment duration > Integration window

: . S Integration windo
varies the length of adjacent sound segments T 1SPONSE (4 IEgration window

(context) to measure the time period over which
B Segment duration < Integration window

stimuli  modulate ngural_ gctlwty [3]. : Different response
Cross-context correlation indicates degree of @Q my

TCI for a neural signal over given segment Same segment surrounded by different context segments
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Deep neural networks (DNNs) and > L |—

. : _ ' Cross-validated prediction accuracy
related  machine learning-based : The Neural Encoding Model System (NEMS, is consistently higher for DNN-based

modgls Ese a_lﬁrge CaS_Ca_dE_ of LN http://github.org/LBHB/NEMS/) permits  direct population models than LN models
llterbanks  without mimicking a comparison of mulitple sensory encoding models. in A1 and dPEG.
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the available data. )

cortex to a Iarge “brary of natural sounds. Models LN prediction correlation LN prediction correlation a DNN trained on ASR. D. Ratio of change in
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were fit using a TensorFlow backend and were _ _ TCI duration for nodes in successive layers

input filters | demsely  Additional and representing a common stimulus subspace in perform better than LN models, even _ o . . T o from onset of shared coament
o densely ) : hen the number of parameter r invariance in DNN models fit to ECoG data. 9 g
connected units dense layers intermediate layers. whe € number ol paramelers pe - o | < —
/ LN ' Same segments in different contexts
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Mean prediction correlation

e e s N Here, we compare the ability of LN and DNN ° duration. C. Example cross-context correlation
number of layers and size of each models to predict responses of neurons in ferret DNN>LN, p<0.05, n=384 DNN>LN, p<0.05, n=143 L P : |
® No difference, n=302 No difference, n=181 over varying segment durations for an early B. Correlation ~ 0 Correlation = 1
tested using cross validation. To leverage Pareto analysis compares population between presentation of normal speech and
' statistical power, we developed a population models with variable layer sizes (L, L, N P g :
L|—|N ’ . . - : 1.4x dilated speech. Blue show same analysis
: encoding model, a DNN that predicts the activity in panel 2) and LN models with e .
— L|—[N ’ for a randomly initialized network. Ongoing
neuron are the same. Models with two
layers of 1D convolutional filters
(ConviDx2) perform best among +8ﬁ?\}/2D | C. Example nodes from ASR model
-single
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layer can be varied to accomodate : : _
primary (A1) and secondary (dPEG) auditory 00 02 04 06 08 00 02 04 06 08 layer node (top) and late layer node (bottom) in I B
4 Integration window
. i imuli variable rank. Population models
L, LN-like of multiple neurons presented the same stimuli P experimerments are investigating dilation
3. A peek inside a population encoding model Free parameters per neuron Free parameters per neuron
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6. DNN models for human ECoG during speech perception
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A. High-gamma LFP signals were collected from

_ : - L. k-1 " human primary (HG) and non-primary auditory .
NEMS permits visualization of LI LY L ‘ e e P cortex (STG) during presentation of continuous | & » ' l )
nput layers for 1D comoluional s e Bo gedndesras ity spoech [1]. B. Comparison of LN and DNA | ) e e UL AT/
models look like traditional | s e T T e models. C. Example dSTRFs. D. dSTRFs reveal — e it 6
STRFs. > o | | | | | | | | complex nonlinear tuning, especially in STG.
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