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Version 6jan2010:1. In Equation 12 a typographical error is corrected to use plus sign '+' on     second line instead of the incorrect leading minus sign '-'.2. Figure 3 has been updated to reflect Equation 12 correction    (Plot of Bean reflection coefficient has changed).
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A Practical Extension of Hydrodynamic Theory
of Porous Transport for Hydrophilic Solutes

JAMES B. BASSINGTHWAIGHTE
University of Washington, Department of Bioengineering, Seattle, Washington, USA

ABSTRACT

Objective: The equations for transport of hydrophilic solutes through aqueous pores provide a funda-
mental basis for examining capillary–tissue exchange and water and solute flux through transmem-
brane channels, but the theory remains incomplete for ratios, α, of sphere diameters to pore diameters
greater than 0.4. Values for permeabilities, P, and reflection coefficients, σ , from Lewellen (18), work-
ing with Lightfoot et al. (19), at α = 0.5 and 0.95, were combined with earlier values for α < 0.4, and
the physically required values at α = 1.0, to provide accurate expressions over the whole range of 0
< α < 1.

Methods: The “data’’ were the long-accepted theory for α < 0.2 and the computational results from
Lewellen and Lightfoot et al. on hard spheres (of 5 different α’s) moving by convection and diffusion
through a tight cylindrical pore, accounting for molecular exclusion, viscous forces, pressure drop,
torque and rotation of spheres off the center line (averaging across all accessible radial positions), and
the asymptotic values at α = 1.0. Coefficients for frictional hindrance to diffusion, F (α), and drag,
G(α), and functions for σ (α) and P(α), were represented by power law functions and the parameters
optimized to give best fits to the combined “data.’’

Results: The reflection coefficient σ = {1 − [1 − (1 − φ)2]G ′(α)} + 2α2φF ′(α), and the relative
permeability P/Pmax = φF ′(α)[1+9α5.5 · (1.0−α5)0.02], where φ is the partition coefficient or volume
fraction of the pore available to solute. The new expression for the diffusive hindrance is F ′(α) =
(1−α2)3/2φ/[1 + 0.2 · α2 ·(1−α2)16], and for the drag factor is G ′(α) = (1−2α2/3 − 0.20217α5)/(1−
0.75851α5) − 0.0431[1 − (1 − α10)]. All of these converge monotonically to the correct limits at
α = 1.

Conclusions: These are the first expressions providing hydrodynamically based estimates of σ (α) and
P(α) over 0 < α < 1 They should be accurate to within 1–2%.
Microcirculation (2006) 13, 111–118. doi:10.1080/10739680500466384

KEY WORDS: capillary permeability, convection, diffusion, hydrodynamic equations, interstitial matrix,
membrane transport, molecular exclusion, osmotic water and solute fluxes, particle flow in fluids,
porous transport model, steric hindrance

Pappenheimer et al. (21) used Poiseuille’s law for
flow through cylindrical tubes to predict capillary
hydraulic conductivity as if there were a set of uni-
form cylindrical pores traversing the capillary en-
dothelium. When pore dimensions approach molec-
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ular dimensions any macroscale continuum descrip-
tion might be expected to fail. One reason is that
at small scales, any structuring of water molecules
might be expected to raise the effective viscosity.
Levitt (16), however, using molecular dynamic calcu-
lations, found the Poiseuille flow expressions to work
surprisingly well for the transport of water through
3.2-Å-radius pores, even when the water molecules
were modeled as hard spheres of 1-Å radius. Other
experimental methods used to determine the pore ra-
dius include measuring the pressure necessary to bal-
ance the surface tension of fluid in the pores, finding
the radius of the largest solute that penetrates the
membrane, and examining the pore dimensions re-
vealed by electron microscopy. These issues are well
explained by Curry in a masterful review (8).
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The hydraulic conductivity, Lp, for flow of a New-
tonian fluid through a population of uniform cylin-
drical pores, following Poiseuille’s relationship at low
Reynold’s numbers without turbulence, is

Lp = Apr2
p

8ηAm�x
= Ap

Am

r2
p

8η�x
= Np

Am

πr4
p

8η�x
(1)

where Ap (cm2), is the total pore area available
for water transport and equals the number of
pores Np times the cross-sectional area of the pore
for water transport; Am is the total capillary sur-
face area; η is the solvent viscosity; poise (p) =
dyn/cm2 = gs−1 cm−1, rp is the pore radius (cm), and
�x is the pore length (cm). Lp (cm s−1) (mmHg)−1,
or (cm2 g−1 s), can be interpreted in terms of two
characteristic pore parameters, rp, and the lumped
parameter Ap/Am�x, the fractional pore area per
path length. This defines the filtration coefficient,
kF = Lp. For a long, parallel-walled slit the equiva-
lent equation is

Lp = Apw2

12ηAm�x
(2)

where the pore radius is replaced by the slit width,
w . Pappenheimer et al. (21) used these equations
to calculate the hydraulic conductivity for capillaries
in the hind limbs of cats as equivalent to uniform
cylindrical pores with radii of 3 nm or slits of 3.7-nm
width.

For solute traversing such pores the process of molec-
ular diffusion is slowed when the mobility of the so-
lute decreases, so a solute in a pore must have a dif-
fusion coefficient, Dp, less than that in free solution.
This restriction becomes more significant as the so-
lute’s molecular dimensions approach those of the
pore. Additionally, solute may be sterically restricted
from entering some regions of the pore (Figure 1). A
spherical solute cannot occupy a position in a pore

Figure 1. A spherical solute with radius rs in a cylindrical
pore is excluded from the cross-hatched region within rs of
the cylinder wall.

within one solute radius from the pore’s edge, so for
a cylindrical pore the solute partition coefficient can
be calculated from

φ = π(rp − rs)2

πr2
p

= (1 − α)2 (3)

where α = rs/rp, the ratio of solute radius, rs, to pore
radius, rp. The solute’s partition coefficient, φ, is the
ratio of the area available to the solute to the to-
tal pore surface area, and is a standard partition
coefficient equal to the equilibrium ratio of the so-
lute concentration within the pore to that outside, in
the surrounding solution. With respect to diffusional
mobility, the exclusion phenomena represents only
the limitation to the volume of water inside the pore
available for solute diffusion, and does not account
for the frictional hindrance that the wall exerts on
the particle through the viscosity of the fluid. The
permeability coefficient (cm s−1) is related to these
parameters by

P = Ap

Am
φ

Dp

�x
(4)

where Dp is the effective diffusion coefficient within
the pore. The ratio of Dp to Dfr, the free diffusion co-
efficient in the external solution, is defined by a fric-
tional hindrance factor F (α), such that 0 < F (α) < 1,
and giving P

P = Ap

Am
(1 − α)2F (α)

Dfr

�x
(5)

Defining a maximum permeability for a solute for
which there is no hindrance, α = 0 and F (α) = 1, then
P relative to an unhindered permeability is

P
Pmax

= φF (α) (6)

F (α) is a factor (0 < F < 1) that defines the reduction
in diffusion due to hindrance. It is given by Curry’s
Eq. 5.17 (8), which is the same as that given by
Faxén’s (10) paper,

F (α) = 1 − 2.10444α + 2.08877α3 − 0.94813α5

− 1.372α6 + 3.87α8 − 4.19α9 (7)

and is shown by the lower black dashed line in
Figure 2. It is intended, via Eq. 6, to characterize
the ratio of the diffusion coefficient inside the pore
to that outside, Dp/Dfr (2,3,8,10). Beck and Schultz
(4) obtained permeability data on 7 solutes with radii
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Figure 2. Hydrodynamic functions F (α) and G(α) for
cylindrical pores. In the classical formulations given by
the black dashed lines, F (α) is given by Eq. 7 and G(α)
by Eq. 13. Both are incorrect at high values of α; F (α)
should not go negative but should diminish monotonically
to zero; G(α) should go smoothly to 0.5, which is the aver-
age velocity of the fluid and particle when the sphere fills
the cylinder diameter and is half the centerline velocity
of parabolic flow in the limit as α goes to zero. The new
(corrected) formulae given in Eqs. 16 and 17 for F ′ (α)
and G ′(α), the red and blue lines,converge to the required
limits.

from 2.64 to 8.47Å through mica microporous mem-
branes of known pore sizes from 45 to 300Å equiva-
lent diameter, and using only the first three terms of
Eq. 7 demonstrated its accuracy for small α. How-
ever, it fails at large α, as is evident from its nega-
tive portion, and must for physical reasons converge
monotonically to zero at α = 1.

For a parallel-walled slit, the equation for permeabil-
ity (7) is

P = Ap

Am
(1 − α)Fslit(α)

Dfr

�x
(8)

In this context, α becomes the ratio of solute radius
to one-half the slit width, α = rs/(w/2), with

Fslit(α) = 1.0 − 1.004α + 0.418α3 + 2.10α4

− 0.1696α5 (9)

The context for these equations is to describe simul-
taneous water and solute fluxes across porous mem-
branes, and therefore one needs to define the solute
reflection coefficient as well as its permeability. From
the Kedem and Katchalsky (13) or the Patlak (22)
solute flux equation, the reflection coefficient can be

defined as

σ = 1 −
(

J s

J vC

)
�c =0

(10)

Since J s is the actual solute flow and C the exter-
nal solute concentration, J vC is the total amount of
solute flux that would occur if there were no hin-
drances to entry or diffusion. The ratio J s/J vC = φ

would be a good descriptor if solute were transported
at the mean convective velocity of the fluid, so Eq. 10
might be rewritten as the approximation

σ = 1 − φ = 1 − (1 − α)2 (11)

This derivation of the solute reflection coefficient ig-
nores the frictional interaction of solute and water
within the pore, and the nonuniform solvent velocity
within the pore. Early estimates of solute reflection
coefficients were made by Ferry (11), who accounted
for the presence of a parabolic velocity profile while
calculating a filtration coefficient for an artificial
membrane by assuming that the solute in the pore
moved at the local water velocity. Renkin (23) pre-
dicted the reflection coefficient for a spherical solute
traveling through a cylindrical pore and attempted to
include the effects of the frictional interaction with
the water. Bean (3), first realized that the term F (α)
should be replaced by the hydrodynamic function
G(α), which accounts for the difference between so-
lute velocity and water velocity (Figure 2). Addition-
ally, Bean accounted for the effects of pressure on
the solute velocity where the solute was positioned
on the centerline and derived the expression for the
cylindrical pore:

σ = 1 − [2(1 − α)2 − (1 − α)4]G(α)

− 16/9α2(1 − α)2F (α) (12)

These are the same pore equations that Curry (8)
used to determine Lp, P, and σ , where G(α) is a
hydraulic factor accounting for the difference in so-
lute and water velocities, and 0.5 < G < 1. Using the
equation from Curry’s Eq. 5.51 (8), G(α) is

G(α) = 1 − 2α2/3 − 0.20217α5

1 − 0.75851α5 (13)

which is for a solute on the axis (centerline) of the
cylinder and is accurate for α < 0.6 and overestimates
G modestly for larger α’s (smaller G’s) as shown in
Figure 2.

Other investigators, including Anderson and Quinn
(1) and Curry (7), using more complex theories, have

bartj
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developed numerically similar or identical expres-
sions. The equivalent expression derived for a rect-
angular slit is (7)

σslit = 2α2

3
(1 − α)Fslit(α)

+ 3
2

(1 − α)
(

2
3

+ 2
3

α − 7
12

α2
)

(14)

The Fslit(α) expression also fails at high α, demon-
strating that the hydrodynamic theory is incomplete.

To improve on this situation, Lightfoot et al. (19), and
Lewellen (18) tackled the problem from the point of
view of low Reynold’s number hydrodynamics, build-
ing upon the work of Bungay and Brenner (5), whose
development was good for α < 0.25. The Lightfoot
1976 study defined values of the reflection coeffi-
cient σ for low α < 0.25, while Lewellen’s thesis (18)
provided values of σ for α at a middle and a high
value, an immense computer calculation taking into
account the details of the processes, torque, radial
position, molecular eccentricity, and density profiles
for the solute within the tube.

For this study, the results of the computations of
Lightfoot et al. and of Lewellen are used to formulate
expressions for F (α), G(α), σ , and P. The approach
is to consider these sparse calculations as “data,’’
which are to be fitted with continuum expressions for
F (α) and G(α), and from which one derives the de-
sired continuum expressions for σ and P. The result
is that for the first time we have available expressions
that cover the full range of α = rs/rp, and that provide
full hydrodynamic calculation fairly precisely.

METHODS

The results from Lightfoot et al. (19), and Lewellen
(18) are provided in Table 1. The results were based
on the full hydrodynamic treatment for solute con-
vective and diffusive velocities within the pore, mak-
ing the calculations for centerline position and for all
the off-center positions within the accessible region of

Table 1. Estimates of σ and P for hard spheres in a cylindrical pore

α= rs/rpore σ P/Pmax Ref σ, Eq. 18 P/Pmax, Eq. 19

0.05 0.019 — Lightfoot et al. (19) 0.015 0.811
0.13 0.083 — Lightfoot et al. (19) 0.088 0.557
0.23 0.224 — Lightfoot et al. (19) 0.228 0.323
0.5 0.665 0.047 Lewellen (18) 0.650 0.048
0.95 0.997 1.48 × 10−6 Lewellen (18) 0.997 1.44 × 10−6

the pore. An arbitrary decision had to be made about
the probability of occurrence of each radial position,
since no observations are available for molecules in
pores, and the decision was to assume uniformity of
solute density across the nonexcluded region at each
α. (Since it is known that red cells migrate to some
extent toward the centerline (24,25), presumably be-
cause they have flexibility, it opens the question of
whether or not hard spheres might behave similarly,
in which case the assumption of uniform cross-section
density would have to be reevaluated.)

A way of viewing porous transport in general is to
consider that the steric hindrance and the geometry
of the pathway through which both solute and water
move define four things: (1) the water conductance
per channel; (2) the solute permeability per channel;
(3) the solute reflection coefficient; (4) solute–solvent
interaction, solvent drag. The reflection coefficient is
independent of the numbers of channels, but the to-
tal water conductance is the single-channel conduc-
tance times the number of channels, just as the total
permeability is the product of the single-channel per-
meability times the number of channels.

Based on these premises, the strategy was to find con-
tinuum expressions for F (α) and G(α) that fit the
historically well-worked formulae at small α and fit
the “data’’ of Table 1 and finally, have the correct
convergences for F (α) and G(α) at α = 1. The fitting
of the “data’’ means fitting the reflection coefficient
and permeability with expressions continuous over
0 < α < 1.

New equations were developed to try to simplify the
power series representation of F (α) and G(α) while
forcing them to terminate properly with values of zero
and 0.5, respectively, at α = 1. The previous power
series expressions given above were considered to be
correct at low α, and were therefore used as a basis
for modifying the expressions.

Scalar expressions were used to modify F (α) and
G(α) smoothly over parts of the range of α. A generic
expression, having a great flexibility of shape over
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0 < α < 1, is the scalar S (α):

S (α) = 1 + k1α
k2(k3 − αk4)k5 (15)

where k1 is an overall scalar for the function, the ex-
ponents k2 and k4 to α provide amplification factors,
and the exponent k5 provides for positioning along
the α axis.

By adjusting the parameters of S (α) by optimization,
the curves for P(α) and σ (α) minimize the squared
differences between the curves for P and σ and the
“data’’ of Table 1 at the given values of α. Decreasing
k2 scales the peak up and toward smaller α; increas-
ing k2 reduces the peak and shifts it to higher α. The
value of k3 is normally kept at 1.0, unless a nonzero
value is desired at α = 1.0. Decreasing k4 lowers the
peak and shifts it to the left, while raising it shifts
the peak up and to the right. Decreasing k5 raises the
peak and moves it toward higher α while increasing
k5 lowers the peak and shifts it to smaller α. Scalars
of this general form were used to modify the curves
for F (α) and G(α) to give good fits of σ and P to the
“data.’’

RESULTS

The calculated “data’’ of Lightfoot et al. (19) and of
Lewellen (18) for σ and P are in columns 2 and 3 of
Table 1. These specify the targets for the optimiza-
tion.

The new equations are F ′(α) and G ′(α) to replace
the old F (α) and G(α):

F ′(α) = (1 − α2)3/2φ

1 + 0.2α2(1 − α2)16 (16)

G ′(α) = 1 − 2α2/3 − 0.20217α5

1 − 0.75851α5

− 0.0431[1 − (1 − α10)] (17)

where φ is the partition coefficient or volume fraction
of the pore available to solute. F ′(α) is almost entirely
dominated by the numerator. The numerator is virtu-
ally identical numerically to the earlier expression in
Eq. 7 for α < 0.6, although it is simpler, is close to the
“data’’ at α = 0.5 and 0.95, and is exact at α = 1.0.
The denominator could be set at 1.0 except for the
need for fine tuning to obtain the correct F ′(α) for
α < 0.5, the largest value taken by the denominator
is 1.0044 at α < 0.24, a change from the numerator
alone of 0.4%.

The G ′(α) was taken to be the same as in Eq. 13
except for the additional second term, which forces

the values of G ′(α) to 0.5 at α = 1, a correction rele-
vant only to the largest spheres. The reason that the
old equations for F (α) and G(α) remained incom-
plete, as shown by the dashed lines in Figure 2, for so
many years is that in calculating the reflection coef-
ficient, σ , and the permeability, P, for large spheres
the values of F ′(α) and G ′(α) are almost irrelevant
since the values of φ dominate the estimate at large
α.

New equations for the reflection coefficient, σ , and
the permeability, P, are

σ = 1 − [1 − (1 − φ)2]G ′(α) + 2α2φF ′(α) (18)

and

P
Pmax

= φF ′(α)[1 + 9α5.5(1 − α5)0.02] (19)

There are no arbitrary correction terms in Eq. 18 The
parenthetic correction term in Eq. 19 has no effect
until α > 0.4, and then rises from 1 to 8. As was true
of the polynomials classically used in Eqs. 7 and 13,
the calculation of P has little sensitivity to the final
value of the scalar since both φ and F ′(α) converge
to zero.

Figure 3 shows the curves for σ and P for the old
and new formulations. In Table 1, the two rightmost
columns, are the estimates of σ and P using the new
equations, for comparison with the “data’’ in columns
2 and 3. The curve for σ matches the data points of
Lightfoot et al. (19), matches Eq. 5.49b of Curry (8),
matches the “data’’ of Lewellen (18), and asymptotes
smoothly to zero.

Figure 4 provides an example of data integration
using the new expression for σ . A detailed model
for the simultaneous exchange of water and solutes
across the capillary wall was developed by Kellen
and Bassingthwaighte (14), accounting for water flux
across endothelial cells as well as through interen-
dothelial clefts. The reflection coefficients estimated
for seven solutes in osmotic transient experiments
on isolated Krebs-Henselt-perfused rabbit hearts by
Kellen and Bassingthwaighte (15) are fitted by Eq. 18
to provide an estimate of an equivalent pore radius
of 7.9 nm.

DISCUSSION

This analysis extends the prior studies on the hydro-
dynamics of convection and diffusion of hard spheres
within a right cylindrical pore by providing simple
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Figure 3. Permeability, P/Pmax, and reflection coeffi-
cients, σ . The solid lines give the results of this study, using
the new formulae for F ′(α) and G ′(α) for σ in Eq. 18 and
for P in Eq. 19. Bean’s (3) equation for σ is the dashed
line. Curry’s (8) Eq. 5.49b for σ is given by the dotted line,
which is almost identical to Eq. 18 (though Curry’s and our
equations for F ′(α) are quite different) until it emerges to
take a lower course for values of α > 0.7. Likewise, the
curves for Curry’s and our permeabilities are similar at
α < 0.4. At high α Curry’s P is too low and actually a little
negative due to the error in F (α) going negative at large α.
The new F ′(α) converges monotonically to zero at large α,
as shown in Figure 2, and gives values of P matching the
estimate at α = 0.95 by Lewellen (18).

numerical calculations for P and σ that cover the full
range of 0 < α < 1. The descriptive fitting function is
an essential feature of this field, in the style of its
early workers like Faxén in providing a power series
approximation to describe the curve.

Figure 4. Reflection Coefficient, σ , for hydrophilic so-
lutes in capillaries of perfused rabbit hearts as a function
of molecular radius, using single pore analysis, Eq. 18.
(Data from Kellen and Bassingthwaighte (15) (Table 3.)

While this is a seeming success, the particular pa-
rameters for the equations above are certainly not
unique, and other sets will be found to be as good.
The Bean calculations for σ contain errors, described
by Lewellen. There are errors also in the Curry calcu-
lation, but these almost cancel, again according to a
detailed appraisal by Lewellen. The Curry equation,
his Eq. 5.49b in the 1984 review, is rather close to the
hydrodynamic calculations of Lightfoot et al. (19) for
low α, and of Lewellen (18) for α = 0.5, but is a little
low at large α where there were no data for Curry to
use. (Here the word “data’’ is really a misnomer, for
it refers to Lightfoot’s and Lewellen’s computational
results.) As Curry and others have pointed out, it has
been impossible to obtain data with sufficiently high
resolution to test the accuracy of the models.

The early formulae F (α), G(α), P/Pmax, and σ were
polynomial expressions fitted to hydrodynamic cal-
culations for chosen values of α, and accounted for
steric exclusion. The introduction of the frictional
term, F (α), and G(α), greatly improved the esti-
mates, even though they were based on the “center-
line approximation,’’ the assumption that the diffu-
sion and drag found for a sphere at the axis of the
cylinder was applicable to eccentrically positioned
spheres. The calculations of Bungay and Brenner, of
Lightfoot et al., and of Lewellen, took into account
the full hydrodynamics, that is, the steric exclusion,
the hindrances to diffusion, the drag, and the pressure
drop across the sphere, and the torque and rotation
produced by viscous interactions with the wall when
the sphere is eccentrically positioned. These authors
all integrated the result over the sterically accessi-
ble region of the cylinder, thereby avoiding any as-
sumption based on the “centerline approximation.’’
The consequence of all this effort is that the present
study’s empirical fits to the “data’’ integrate all of the
detailed hydrodynamic information at various α into
a single formulation. Being solidly physically based,
these formulations, Eqs. 18 and 19, are presumably
the best overall expressions available.

This study is also a provocation to redo the compu-
tations of the true hydrodynamics with modern com-
puting methods, over the whole range of 0 < α < 1.
Then the data points could be refitted using a strategy
such as is used here, to end up with yet more accu-
rate formulae. Further, all of our expressions assume
no interactions between solute particles, so these ex-
pressions must fail at high concentrations of larger
solutes, which cannot pass each other (α = 0.5) and
which cause hydrodynamic interactions at a distance
[6].
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Applications using reflection coefficients and perme-
abilities in combination are extensive in the litera-
ture using the irreversible thermodynamic approach
of Kedem and Katchalsky (13), with much explo-
ration of the nature of porous transport through
the capillary membrane of isolated capillaries and
capillaries in intact organs. Levitt (17) derived the
Onsager reciprocal relationship that was fundamen-
tal to irreversible thermodynamics from hydrody-
namic calculations, a result that extended confidence
in such approaches. The reason for this strenuous
effort has been to understand substrate exchanges
between blood and tissue, and to explain water and
protein transport between blood and lymph.

The equations for P and σ are useful in designing ex-
periments to characterize membranes. Provided that
measurement of the fluxes of water and of a series
of solutes of differing molecular size is possible, and
given that some of the molecular sizes approach the
channel size, so the degree of hindrance is measur-
able, characterization is straightforward but not sim-
ple. A set of solutes for which P/(D/�x) are different
must be chosen, that is, a set of solutes with sizes that
cause differing degrees of hindrance. One of these so-
lutes should have a reflection coefficient of 1.0, so Lp
can be estimated from osmotic water flux; the esti-
mate should be verified by comparison with the esti-
mate of Lp from a pressure-driven flux. With two or
more other solutes of smaller size, and the estimates
of P and σ these solutes provide, the pore diameters
can be estimated in terms of equivalent cylindrical
pores, slits, or other geometry. The numbers of pa-
rameters to estimate for the cylinder is four: Lp times
S , Np times S , the diameter, and the pore length, �x.
Permeability is derived from Np times S , diameter,
and pore length. A good exercise in experiment design
is to determine the effects of experimental accuracy
of the estimates of these parameters.

For a more detailed review of irreversible thermody-
namics and its application to coupled solute–solvent
transmembrane transport see the texts by Katchal-
sky and Curran (12) or by Stein (26) and the re-
view in the Handbook of Physiology by Curry (8).
For porous transport see reviews by Bean (3) and
Deen (9). A perspective on applications in microvas-
cular exchange is given by Michel and Curry (20).
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