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Abstract

Metabolic events within cells are intimately linked with the external influences of substrate
delivery and metabolite removal. These influences include the level of cellular activity, the local
blood flow, transmembrane transport rates, and humoral and neural regulation of receptors and
reaction rates. The question “What are the basic principles that the developers of tracer models
should use?” evokes discussion on the scope of the modeling: an extremes is “minimal modeling”,
wherein one considers only the observations of the injected tracer-labelled solute itself (as in
pharmacokinetics), its reaction products, or extend to its effects on the physiology (as in
pharmacodynamics). Minimal modeling can work for classification or diagnosis but, unless the
model has the depth to encompass mechanisms of tracer handling, doesn’t often provide an
explanation. Here we advocate adherence to a broad set of principles for the design and
application of models to the understanding of physiological systems: (1) consider the anatomy (a
biological constraint) as an essential part of the data, (2) take into account the background
physiological state of the subject (biochemical, thermodynamic constraints), (3) consider the
processes that the tracer labelled solutes undergo (mechanisms of transport and reaction), (4) be
obedient to the laws of physics and chemistry (conservation principles for mass, energy, charge,
momentum, etc.), and (5) adhere to a set of modeling standards allowing reproducibility and
dissemination of the model. A two compartment model with a binding site illustrates that
recognition of the anatomic constraints would foster a better understanding of the system kinetics.
Another example is to abandon the lumped compartmental representation of spatially extended
capillary-tissue exchange in favor of using anatomic-based equations, thereby obtaining
physically meaningful esxtimates of parameter values.

Key Words: tracer, tracee, metabolic physiologic modeling, lumped compartmental versus
spatially distributed systems, capillary-tissue exchange, membrane transporters, enzyme
reactions, steady state versus transient states.
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INTRODUCTION

Advances in computational speed and simulation interface technology now make it practical
to choose valid physiological modeling approaches rather than using minimal models for
classification or description. Here we will argue that by following a few general guidelines and
standard scientific ideas one can bring additional power, reliability, and accuracy in
parameterization, and, best of all, improved insight into the processes involving solute transport.

The “principles” are a combination of scientific principles and psychological aids or
perspectives that make it easier to keep on the straight and narrow. Here we address particularly
the users of “compartmental analysis” for it appears that the nomenclature and computational
toolkits commonly used are compromising the efficacy of this particular community of skilled
scholars in determining mechanisms to explain the observed kinetics. This is in spite of the fact
that Berman (1963) in his classic article on modeling clearly espoused properly principled
modeling, including examination of underlying assumptions. While making this bold general
criticism, we recognize that there is an immense amount of productive contributory work
accomplished with the same tool kit that we are criticizing. At the same time, we suggest using an
alternative methodology that forces adherence to scientific principles and facilitates placing
particular tracer models into the context of discovery science, specifically, to attempt to elucidate
biological mechanisms in networks of processes, going beyond the kinetics.

Integrative modeling is only beginning. Each of the thousands of models in existence is
potentially a component module in a larger scale integrated model. Model archiving and public
accessibility will make it possible for future investigators to combine modules, thereby
constraining the behavior of the individual components. It is therefore contributory to the
community effort to make each model available, understandable, reproducible, verifiable and to
provide along with it the data that demonstrates its validity with respect to the biology.

The primary recommendations for the modeling of biological systems are:
1. Use the known anatomy, structure, and composition to constrain estimates of local and

overall volumes of distribution, routes of transport, and other kinetic possibilities. These are
not necessarily measured in every experiment, but in general should be considered as parts of
the experimental data since their means and standard deviations are known and they provide
realistic constraints. For example, the water fraction of heart muscle is so narrowly con-
strained that it can be used as a constant, being 0.78 +/- 0.01 ml/g tissue (Yipintsoi et al 1972).

2. Define parameters and variables in physiologically meaningful terms in order to stimu-
late re-examination of assumptions at each stage. Consider the details of the underlying phys-
iology in defining the model in order to constrain its form and behavior. For example, use
continuity in concentration profiles along segments of the vascular system or within cells. In
using mathematics that describes the biology, don’t compromise the mathematics to fit limita-
tions in computational methods, but compromise later, with caution. Use standardized termi-
nology where possible, and try to use terms defined in ontologies such as the Foundations of
Medical Anatomy in order to maintain uniqueness of terms.

3. Apply conservation principles (mass, charge, volume, energy), and relevance to a viable
steady state, preferably checking for these in each program. Provide thermodynamic con-
straints on all reactions. ∆G counts. Use units in defining all variable and parameters. Use
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technology which uses automatic unit balance checking in order to force identification of
errors.

4. Recognize that the fundamental description of the kinetics of tracers is always at the
molecular level, therefore “think like a molecule” on how each process occurs: Convected in
in the blood in a bound or free state? How is the membrane traversed? How does each reaction
occur, and where? The tenet of tracer methods is not that the system should be in steady state,
but that the linearized coefficients for the tracer kinetics are slaved to the fluxes for the mother
substance in both transient and steady states. Use dual models, mother and tracer, where the
mother model, for tracee, contains all the physiological mechanisms, while the tracer model
has its coefficients directly derived from the current ambient state for tracee.

5. Adhere to standard requirements for the design, performance, documentation, and dissemi-
nation of models. The goal in presenting a model is easy and accurate reproducibility by a user
community of researchers, teachers, and students. Check lists for documenting and archiving
a model are being developed, and a preliminary version can be found at www.physi-
ome.org/Models/standards.html. Whenever such standards are not being met, think of of it as
an invitation to explain that something is missing or assumed in the modeling. It probably will
not be long before journals establish such criteria for publication. Certainly the federal fund-
ing agencies are moving rapidly toward requiring that the results of federally funded research
be made publicly available.

Most commonly, the kinetics of exchange and metabolism are based on the idea that a solute
(drug, substrate or metabolite, receptor, enzyme, etc.) can be treated as being within a lumped
system, i.e. one wherein the concentration of the solute is everywhere uniform. “Lumped”,
“compartmental”, or “stirred tank” representation allows the system to be described using
ordinary differential equations, which is simpler than accounting for spatial gradients and using
partial differential equations (PDEs). In this essay we argue that using PDEs is as simple
conceptually as using ODEs, that modern simulation systems analysis tools makes PDE usage in
practice as easy as using ODEs, and that the PDEs are required to obtain physically correct
measures of parameters of many systems. The argument is simple: the use of incorrect
representation of the anatomy of the system causes artifactual errors in parameter estimates for
transport rates and reaction rates.

Such errors have been obvious to those examining oxygen exchange for a long time, since
Krogh and Erlang (1919) modeled oxygen profiles in capillary tissue exchange units. They
showed that if the tissue oxygen consumption was uniform there were nearly exponential
gradients in oxygen tension, PO2, along the capillary length, and parabolic profiles in PO2 in the
tissue between capillaries. In blood-perfused tissues the calculation of the profiles is more
complex because of the binding of oxygen to hemoglobin, Hb, and the influences of carbon
dioxide, pH, and temperature, all of which have intracapillary gradients, on the oxygen binding.
Axial gradients in PO2 are more linear than exponential (Dash and Bassingthwaighte, 2006). The
fact that most drugs and hormones are also bound to blood components, e.g. retinone, fatty acids,
either RBC or plasma proteins invites consideration of the similarity between the mechanisms of
their exchanges and those of oxygen. Further, most drugs and solutes of interest are less soluble in
membranes than is oxygen (whose transport across lipid membrane is so fast as to be limited
solely by delivery to the membrane surface, not by the permeation process itself), and commonly
require specialized transporters to facilitate transfer. Where transporters are required, there is
virtually always competition for the binding sites, so transport rates for a foreign drug or a
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tracer-labeled solute can be expected to be somewhat dependent on the ambient concentrations of
those native solutes or other drugs.

One of the reasons for assuming stirred tank representation (compartmental models) was to
reduce computation time, a goal rendered less critical with fast modern computers, but important
when one has to optimize model predictions to fit many data sets. Modeling analysis for data on
15O-oxygen from positron emission tomography (PET) was particularly slow because it required not
only iteration but also required solving a steady state model for non-tracer oxygen (Li et al 1997)
as well as the tracer data. To speed up this computation, Dash and Bassingthwaighte (Ann
Biomed Eng 32: 1767-1793, 2004) developed invertible Hill-type saturation expressions for
hemoglobin (Hb) saturations and blood-tissue gas exchanges accounting for the simultaneous
hemoglobin binding of O2, CO2, H+, 2,3-DPG, and the effects of temperature. The equations
allow rapid calculation of the redistribution that occurs along the length of capillary-tissue
exchange regions in the lung or in tissue. Likewise these equations can be used to account for pH
buffering in the blood, and for exchanges of gases in the capillaries of tissues and lungs in a whole
body model describing gas exchange. A prototype of a circulatory-respiratory exchange model is
available at www.physiome.org/Models. This approach, implementing fast algorithms, is only one
of many tricks that one can use to save time.

Other approaches involve a reduction in the number of free parameters in an optimization
procedure, such as using known values for volumes of distribution or known Km’s for enzymatic
reactions or transporters. Additional efficiency is gained by using thermodynamic constraints
(e.g., Haldane) to limit parameter ranges and thus shrink the available state space. Using the
known equilibrium constants in biochemical systems analysis, e.g. in flux balance analysis,
reduces the range of individual flux estimates in E.coli metabolism by about 2 orders of
magnitude (Beard, Liang, Qian BJ, 2002).

APPROACHES AND METHODS

Definition of tracer, C*:
The advantage of using tracers is that nonlinear processes are rendered linear when the

overall system is in steady state for all solutes except the tracer itself. The rationale for this is that
the concentration of the tracer-labeled solute C* is in negligible concentration compared to that of
the non-tracer mother substance, C, so that changes in C* has no impact on the kinetics for the
mother substance:

For the transport of C, the rate constant depends on its concentration C, for example, relative
to the dissociation constant for the process of binding to the transporter:

, (1)

where C is a concentration, M, k(C) is a transfer or reaction rate, s-1, which is a function of the
concentration of C. When tracer (C*) is transported by the same process as the mother substance,
then the transport of C + C* is essentially the same as that for C alone and the transport of C* is
given by

dC dt⁄ k– C( ) C⋅=
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. (2)

By definition, tracer concentrations are C*/C << 1 and usually < 1/1012. As a result, k(C+C*) =
k(C) and k(C) is independent of C*, and

, (3)

showing that the rate constant for C* is identical to that for the mother substance C, at the
particular concentration, C, in steady state. When the concentration of C is slowly varying then
the same considerations apply, but in that case k(C) becomes k(C(t)). Likewise, when C varies
spatially within a capillary-tissue exchange region, i.e., C(x,t) is a function of position x, then this
rate is expressed as k(C(x,t)).

Writing dual models for tracee and tracer together:
Most tracer models are developed from node/edge relationships in networks of reacting

species and then written in the form of linear sets of ordinary differential equations. This
methodology is based on two independent assumptions: (a) that a node represents a
time-dependent variable that is spatially uniform, as if concentrations are instantaneously mixed
over a finite space, the compartment, and (b) that the edges, the rate processes, have linear,
constant coefficients for tracer because the mother or tracee system is in a constant,
non-oscillating steady state. We will explore the effects of deviations from these assumed
conditions.

When (b) is applicable, then the rate coefficients for tracer can be considered linear and
constant at each location in the system, though they are necessarily different in each location
whenever the concentration of mother substance is different. A reliable way to approach the
analysis of such a system is to model tracee and tracer together before jumping to the linearized
tracer equations.

As a first example, to make the assumptions clear, we discuss a two compartment system,
first for mother substance, tracee, and then for tracer. The second example will be a flow-through
system, considering it as comprised of blood and tissue.

MODELING OF A TWO-COMPARTMENT SYSTEM

This section focuses on the effects of solute binding on volumes of distribution, on exchange
rates and times to equilibration, and on the estimation of physiological parameters.

Model 1: Binding site in compartment 1 of a 2-compartment system, Non-tracer

Model 1A: Non-instantaneous binding (equivalent to a 3 compartment system)

This system is diagrammed in Figure 1. For this system the equations are:

, (4)

dC* dt⁄ k– C C*+( ) C*⋅=

dC* dt⁄ k– C( ) C*⋅=

dC1 dt⁄ PS
V 1
-------– C1 C2–( ) kON B C1⋅ ⋅– kOFF CB⋅+=
/userA/jbb/Desktop/737_2Feb.fm 4 May 6, 2009 3:30 pm



Principled Physiological Modeling (#737) Page 5
, (5)

, (6)

. (7)

where C is concentration of tracee, mM; t is time, seconds; PS is a passive conductance, a
permeability-surface area product, cm/sec times cm2, or ml/sec; V1 , ml, is the volume of
compartment 1; kON, mM-1 s-1, is the rate of binding of C to the ligand B within compartment 1 to
form CB, and kOFF, s

-1, is the rate of release of C from CB, so the dissociation constant,
KD = kOFF/kON, mM,

and BT, mM, is the total concentration of ligand (bound + free); C2, mM, is the concentration in
compartment 2 whose volume is V2, ml.

To illustrate the behavior of this model, BT = 1 mM, KD = 0.1 mM and solute is introduced
into the system at an initial value of C1=1 mM. The results are shown in Figure 2 for various
values of kON. Because binding is slow relative to permeation, there is a rapid early overshoot in
C2 and a slow return to the final equilibrium condition where KD =B*C1/CB.

Model 1B: Instantaneous binding of solute to ligand in Compartment 1:

This is a reduced form of Model 1A assuming that the binding of C to any free B occurs
instantaneously. When both kOFF and kON are rapid CB can be calculated algebraically instead of
using a differential equation. Using Eq. 5 and setting the derivative to zero to represent the
equilibrium between C and CB, then

, and (8)

Figure 1: A two compartment system for the passive exchange of solute C
between the stirred tanks. In tank 1 the solute may bind with a ligand B whose total
concentration is BT, mM, in accord with the reaction shown at right. The reaction
rates for tracer C* are determined by the concentration C of tracee or mother
solute. PS, ml/s, is a conductance, the permeability-surface area product of the
membrane separating the two chambers, allowing bidirectional passive flux.

V1 V2

C1, C
*
1 C2, C

*
2BT

PS C + B CB

C* + B C* B

k ON

k OFF

dCB dt⁄ kON B C1⋅ ⋅ kOFF CB⋅–=

B BT CB–=

dC2 dt⁄ PS
V 2
------- C1 C2–( )=

dCB dt⁄ 0 kON B C1⋅ ⋅ kOFF CB⋅–= =
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, and (9)

(10)

Figure 2: Equilibration of C across a barrier with a binding ligand in V1. for
increasing values of kON from 0.3 to 100 mM-1s-1. Top panel: The initial
concentration C1 was as if 1 µmole of C were injected in a volume V1 of 1 ml at t =
0. Parameters were PS = 1 ml/s, BT = 1 mM, KD is constant at 0.1 mM, and V2 = 1
ml. Bottom panel: Concentrations of free binding sites, B, and of C2.

K D
kOFF

kON

----------
B C1⋅

CB
---------------= =

d C1 CB+( )
dt

-----------------------------
PS
V 1
------- C1 C2–( )⋅–=
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CB is defined by substitution of Eq. 6 into Eq. 9:

.

Solving for CB by rearranging the expression above gives an algebraic expression for CB

independent of free B:

(11)

The equilibrium relationship between CB and C1 can be substituted into Eq. 10 and after
differentiation gives.

. (12)

Now it can be seen that the theoretical volume of distribution is not V1 but a larger volume, V1
p

. I
The quadratic term is not relevant when C1 is constant. Then, V1

p
can be seen to be a

concentration-dependent volume of distribution at equilibrium:

, (13)

At equilibrium, the effective volume of distribution, V1
p

or Vd, is defined by the actual
concentration CB from Eq. 11 , which augments the free concentration

(14)

Now Eq. 12 can be rewritten:

(15)

Now the system equations define C1 by Eq. 15 (with Eq. 13), C2 by Eq. 7 (unchanged), and
2-compartments using a modified, concentration-dependent volume of distribution. Plotting
V1

p
versus C1 (Figure 3) shows that the maximum V1

p
is at any C1 < KD where most of the solute is

bound and is V1 (1 + BT/KD). When C1 = KD, half of BT is bound and CB = B. At high
concentrations much greater than KD, all the binding sites are filled and V1

p
goes to V1.

CB B C1⋅( ) K D⁄ BT CB–( ) C1⋅( ) K D⁄= =

CB
BT C1⋅

K D C1+
---------------------=

dC1

dt
---------- 1

BT

K D C1+
---------------------

BT

KD C1+( )2
----------------------------–+

 
 
  PS

V 1
------- C1 C2–( )⋅–=

V p
1 V 1 1

BT

K D C1+
---------------------+ 

 =

V d V 1 1 CB C1⁄+( )=

dC1

dt
----------

PS

V p
1

--------- C1 C2–( )⋅–=
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Figure 3: Top panel. Volumes of distribution, V1
p

 (Eq13) for equilibrium binding
and Vd (Eq14) for an unsteady state of increasing C1 versus concentration C1.
Bottom panel. The in silico experiment was to raise the concentration C1 at an
accelerating rate into a stirred tank of volume V1=1.0 ml (upper panel). Conditions
were: KD = 0.1 mM; kON = 100 mM-1s-1; and PS = 0. The rate of concentration
increase in V1 was 30 nM/s2, such that after 20 seconds C1 has reached 5 mM. The
theoretical V1

p
(thick black line) can be seen to diminish in accord with Eq. 13 as

C1 rises. The actual or effective Vd = V1(1 + CB/C1). Vd is initially equal to V1
because CB is zero. Then CB rises rapidly as binding occurs to form CB, but in
spite of the fairly high kON does not reach the equilibrium binding level V1

p
until

about 5 seconds have passed at which point Vd =V1
p

.
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In this example with BT/KD = 10, the maximum volume of distribution V1
p

is 11, and is
observed when equilibrium is attained at low concentrations. However, when the solute does not
arrive at the binding site instantly or does not react instantaneously, the effective volume of
distribution Vd must be less, as shown by the thin black curve in Figure 3. Even when the binding
rate is moderately high, kON = 100 mM-1s-1, a lag in the effective volume of distribution is present
when C1 is rising (bottom panel of Figure 3). During this transient, the maximum Vd is less than
that expected theoretically, V1

p
.

Model 1.C:  Tracer added to a slow binding system in equilibrium for non-tracer.
The phrase slow binding (and slow release) implies that k’s are similar to PS/V1

p
. Tracer

concentrations are C1
* and C2

*. The tracer equations take their coefficients from the tracee, and
the equations are the same as for tracee, Eqs. 4 to Eq. 7:

, (16)

, (17)

, and (18)

(19)

where Eq. 18 for free B gives the same value as from Eq. 6 since the concentration of C*B is
negligible. The conductance PS is here considered purely passive, involving no transporter.

Figure 4 shows the effect of adding tracer to the system after equilibration of tracee has
occurred between the two chambers and between free and bound forms in V1 . The shape of the
relaxation curve for C1

* (t) in V1 is different for increases in kON (top panels) compared to increases
in PS (bottom panels). Increasing PS from 0.1 ml/s to higher values leads to rapid entry of C into
V2, resulting in an overshoot in C2 above the final equilibrium value. This overshoot has the effect
of actually prolonging the transient, as can be seen by comparing the tails of the tracer curves
(right panels) for PS = 0.1 ml/s and PS = 1.0 ml/s, the latter converging more slowly. The reason
for this is that the early loss into V2 causing the same overshoot for C2

* as was seen in the first few
seconds for the non-tracer C2, this renders it unavailable to the binding site in V1 after it returns
from V2 to V1. Mechanistic modeling of this sort reveals phenomena that are not intuitively
obvious. This would not be evident in straightforward compartmental modeling with constant
coefficients.

Model 1.D: Instantaneous Versus Slow Tracer Binding in Tracee Steady State Situations
When binding is instantaneous the effective volume of distribution for tracer is determined

solely by the steady state concentrations of tracee and binding ligand:

dC
*
1 dt⁄ PS

V 1
-------– C*

1 C*
2–( ) kON B C*

1⋅ ⋅– kOFF C*B⋅+=

dC*B dt⁄ kON B C*
1⋅ ⋅ kOFF C*B⋅–=

B BT CB– C*B–=

dC*
2 dt⁄ PS

V 2
------- C*

1 C*
2–( )=
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(20)

where C1 in the denominator denotes the constant mother concentration. (Second order terms in
the derivative are ignored.) Because C1

* is orders of magnitude smaller than C1 (the definition of
a tracer), the denominator on the right side equals V1

p
as in Eq. 13. The tracer C2

*equation is the
same as Eq. 19. Equations are not needed for CB or B since the information is accounted for in
the denominator of Eq. 20.

The coefficients in Eqs. 19 and Eq. 20 are only constant when the mother solute is in steady
state. Then and only then, the tracer equations are linear, with constant coefficients. From this it
seems obvious that the tracer transient equations could simply use the coefficients for the mother

Figure 4: Tracer added (right panels) after tracee and binding site have
equilibrated (left panels) with KD=0.1 mM, BT=1 mM, and V1=V2=1 mM. Curves
denoting tracer transients in right panels follow equilibration in left panels. Top
panels: With PS constant at 1 ml/s, increasing kON reduces the time for tracee (left
panel) tracer (right panel) equilibration. Bottom panels: With kON = 1 mM-1s-1 (1%
of that in Figure 3) and KD is constant, increasing PS from 0.1 to 1.0 ml/s produces
a faster initial part of the tracer transient (from 30 s < t< 35 s) but the actual time to
equilibration is actually lengthened, having a long low tail. For both pertubations,
the overshoot in C2 is less than the overshoot in C2

* because of non-linear kinetics
resulting from binding site disequilibrium.

dC*
1

dt
------------

PS
V 1
-------

C*
1 C*

2–( )

1 BT K D C1 C
*

1+ +( )⁄+( )
------------------------------------------------------------------

PS C*
1 C*

2–( )

V 1
p

----------------------------------–=⋅–=
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substance; for example, if the PS for the membrane represented the conductance for a non-linear
facilitating transporter, then using its value at the particular C1 and C2 for the mother substance in
steady state would be exactly correct for the tracer in the transient. This is true for processes
involving conductances but not for volumes of distribution, as will be seen by examining tracer
transients for this system.

Examine the situation when kON is 104 mM-1s-1, resulting in effectively instantaneous
equilibration between C1 and B, as in the top panel of Figure 5. Starting from initial conditions
C1=C2=0, a 1 mM pulse of C is introduced into compartment 1 and equilibrium is achieved in less
than 5 seconds. At t = 10 seconds, a bolus of tracer is injected into V1. The tracer concentrations,
C1

* and C2
* were calculated in two ways, using equations describing slow binding, Eqs. 16 to

Eq. 19, and then using equations describing instantaneous binding, Eqs. 19 and Eq. 20. The
results show that the two methods give identical results (within about 0.0001 mM using the solver
CVODE) and that Eq. 20 is correct when the binding rate is truly fast.

The bottom panel of Figure 5 illustrates the error caused by applying the instantaneous
equilibrium assumption to a system with slow binding, kON = 1 mM-1s-1. Shown are the “true”
tracer curves for the tracer concentrations, C1

* (thick solid) and C2
* (medium solid) and for C*B

(thin solid), using the slow binding model of Eqs. 16 to Eq. 19. The same three concentrations
calculated from the instantaneous binding model of Eqs. 19 and Eq. 20 are shown as
corresponding gray dashed lines. As expected, the two models predict quite different tracer
profiles. The solid lines, which account for the slow binding kinetics, display transients that are
quite different from the instantaneous binding model. C1

* now has a high early peak, as does C2
*

but C*B shows a slow monotonic rise to ist equilibrium level. The dashed curves are unchanged
from the upper panel by the change in kON, of course, as the assumption for Eq. 20 is that
equilibration is instantaneous.

Estimating model parameters while making the erroneous equilibrium assumption:
Analyzing observed tracer data using an equilibrium (i.e., fast) binding assumption is often

correct as shown in the top panel of Figure 5 and might be considered reasonable if we hadn’t
been subjected to the slow binding situation presented in the bottom panel. Thus, it is interesting
to determine what might be the parameters estimated by fitting the solid lines of the bottom panel,
which are correct solutions, with the equilibrium-based model described by Eqs. 19 and Eq. 20.
(To do this in JSim using an optimizer, one exports the text file of results in the bottom panel of
Figure 5, then imports it as “data” into the same project file, allowing the curve of C* “data”, open
circles, to be chosen and fitted with the model solutions based on Eqs. 19 and Eq. 20.)

The result shown in Figure 6, top panel, is that the 2-equation pseudo-equilibrium model can
give a good fit of C1

* to the “data”, the correct solution shown by the thin continuous line, but at a
cost. One cost is sacrificing accuracy in estimating the real kinetic parameters. The second cost,
not so obvious if one only observes C1

* , is the failure to predict C2
* “data”, closed circles, with

the true 3-equation solution for C2
* as indicated by the thick continuous line. The bottom panel

shows how the parameters diverge from the correct values as they converge on a fit for C1
* . The

results of a set of seven optimization runs, Table 1, shows that the reduced model has little
sensitivity to either BT or KD because their final values vary widely for very close fits of the
“data”. The estimates for PS are quite consistent, being about 25% higher than for the original
“data “, and estimates of V2 are consistently over twice the correct value, while estimates of V1 are
mostly low and widely scattered. However, the table reveals significant covariance amongst
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Figure 5: Tracer transients, C* , when there is solute binding and permeation.
Model parameters are BT = 1 mM, KD = 0.4 mM, V1 = V2 =1 ml, PS = 1 ml/s. At t
= 10 s, a bolus of tracer is inserted into V1 as a narrow Gaussian pulse (mean time
= 10 s, standard deviation = 0.5 s). Top panel: Fast binding, kON = 104 mM-1 s-1.
Results are the same for C1

* using either Eq. 16 or Eq. 20 for C1
* . For this fast

equilibration situation, Eq. 20 is correct. Bottom panel: Slow binding, kON = 1
mM-1 s-1. Results for C1

* and C2
* from t=9 to t=15 seconds using Eqs. 16 to Eq. 19

differ dramatically from those using Eq. 20 for C1
* , showing that Eq. 20 is

erroneous even though the system for mother substance is in steady state. The
linearization, using an equilibrium-based coefficient in Eq. 20, is inappropriate
when a capacitance is involved and that capacitance is changing more slowly
during the tracer transient than is assumed for the coefficient in Eq. 20.
/userA/jbb/Desktop/737_2Feb.fm 12 May 6, 2009 3:30 pm



Principled Physiological Modeling (#737) Page 13
Figure 6: Optimization trial of the 2-equation pseudo-equilibrium model to fit C1
*

“data” on tracer transient computed using the full 3 equations. Top panel: The
model curve (thin line) fits the “data” (open circles) for C1

*, but the parameters are
different.  (The “data” curve from the true 3-equation model C2

*  (closed circles),
not included in the objective function since it would normally not be observed, is
well above the model solution for reduced 2-equation model C2

*  (thick line)
during the transient, though the 2-equation model is close to the correct steady
state level at t = 20 s. Bottom panel: The optimized parameters were started at the
correct values (except for KD) for the mother substance, and diverged to quite
different values (Table 1, Trial 6) to achieve a good fit to C1

* . See Table 1 for
results of the other Trials.
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parameters, e.g. the low estimates of V1 are associated with high affinity of the binding site (low
values of KD). This is to be expected since BT was kept at 1 mM and not allowed to adjust in the
optimization. Since it is mass or quantity that counts, when the affinity chanced to increase in the
optimization, the volume of compartment 1 decreased. To compensate, compartment 2 volume
increased in order to fit the downslope of the model curve after its peak and to keep the time
constant of the transient of the order of V2/PS .

Supposing that the only observable variable is C1
* , how then could one avoid an errorneous

interpretation of the configuation of the system? Since C1
* can be fitted nicely with a

2-compartment model, how would one know that 1) there is a binding site; and 2) the system
compartmental volumes and the PS are wrongly estimated? The first part of the answer is to use
other information. Are the estimates of V1 and V2 in accord with the known anatomy? That
comparison gives a good clue if other data on V1 and V2 are available. The second part of the
answer is that the concentration of mother substance should be measured. Then the concentration
of mother substance should be raised and the experiment repeated. The KD is presumably
unknown, but if the concentration happened to be raised from below to above the KD, the binding
site will be revealed. If the original C1 was far below the KD, a decade increase in C1 may not
suffice to change V1

p
but if the original C1 was greater than about 0.01KD then a diminution in V1

p

at the raised concentration will reveal the presence of B, allow a crude estimate of BT and KD, and
certainly provoke doing further experiments to estimate them accurately.

Another approach is to ignore the possibility of binding being involved in the form of the
data curves, To do this one sets the value of BT to zero, removes both kON or KD from the
parameters to be optimized, and proceeds to obtain a best fit of the same 2-Eq model to the 3-Eq
model solution. The results in Figure 7 demonstrate that the fit is just as good as with the more
complete model, with the root mean square error being 221.9, comparable to those in Table 1, but
the parameters differ: V1 is 1.159 ml, V2 is 2.25 ml, and PS is almost unchanged at 1.245 ml/s. As
before, change in apparent volumes make up for the accumulation of bound ligand in the original
system. The lesson here is that an incorrect model is not necessarily going to be invalidated by
comparison with a parsimonious data set that includes no information on the actual volumes in the
real system. If anatomic data had defined these volume to within 10 or 20% of correct values then
the analyst would have noted the disparity between estimated and real volumes, particularly for
V2, and would have been more likely to incorporate the binding site into the model.

The summed volumes for the three parameter fit have to account for the total mass of tracer
injected, even though BT was set to zero and the final part of the curve for C1

* had to match that

Table 1: Results of Optimizing the 2-Eq Equilibrium Model Eq. 19 and Eq. 20 to Fit 3-Eq
“Data” as shown in Figure 6.

Parameter
Original
Values

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7

BT 1.0 mM 0.734 0.014 0.562 0.045 0.201 0.651 2.229

KD 0.4 mM 0.813 0.033 0.008 0.252 0.001 0.869 0.485

PS 1.0 ml/s 1.247 1.246 1.247 1.246 1.246 1.246 1.246

V1 1.0 ml 0.671 1.116 0.038 1.073 0.483 0.723 0.230

V2 1.0 ml 2.254 2.254 2.254 2.254 2.254 2.254 2.254

RMS error 221.9 221.9 220.5 221.9 221.8 221.9 221.9
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from the data where binding was included. Therefore the sum of the tracer mass in Figure 5 has to
match the sum in Figure 7,
i.e. , which is exactly so. In
Figure 5 the final values of C1

* and C2
* were both 0.29 x 105 pM and C1

* B was 0.42 x 105 pM
for a total of 105 pmole. In Figure 7 the total estimated volume is 3.41 ml and the final
concentration is 0.293 x 105 pM giving a total of 105 pmole injected and retained in the system.

Figure 7: Optimization to fit the 2-Eq model to the 3-Eq model solution assuming
the absence of any ligand binding in V1 or V2. The matching of the C1

* data (open
circles) by the 2-Eq model is as good as that in Fig 6, but the parameter values are
different; the error in C2

*  is about 25% when t=12s. Estimated values: V1 = 1.159
ml, V2 = 2.254 ml, and PS =1.246 ml/s. Correct values: V1 =1 ml, V2 =1 ml, PS =1
ml/s, BT =1 mM, and KD = 0.4 mM.

V 1C*
1 V 2C*

2 V 1C*B in Fig 5 V 1C*
1 V 2C*

2 in  Fig 7+=+ +
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Mass is conserved! Cobelli et al (2000, Chapter 7) make this point nicely, and further argue that
using anatomic information narrows the confidence limits for parameter estimates.

The first lesson from Figure 7 is that the data can be fitted without any consideration of either
binding or of anatomical constraints, but that ALL of the parameter estimates were erroneous.
Though the virtual volume of distribution was correct, the total anatomic water volume was
overestimated by 70% and the PS by 25%. Thus linear compartmental analysis was misleading. If
the KD had been 0.1 mM, as in Figure 2 instead of 0.4 mM, then the errors would have been larger,
as the total volume of distribution would have been 12 instead of 3.4 ml. This difference would
have been observed if the tracer had been injected at two different known levels of mother
substance.

The second lesson from Figure 7 is that it is important to measure the background, native
solute concentration when doing tracer experiments in order to interpret the results in terms of the
underlying physiology and biophysics. For example, when another solute is added to the system,
the rate coefficient PS/V1

p
in Eqs. 19 and Eq. 20 might be changed. Additionally, it may be useful

to consider how one might detect or identify changes in the following: (a) PS (e.g. changing width
of a channel); (b) the level of free binding sites, B (e.g. reduced by B binding to the new solute);
(c) KD (e.g. by an allosteric effect on the binding protein); (d) C1 (e.g. by influencing some other
reaction involving C in either V1 or V2); or (e) V2 (e.g. by shrinking or expanding the cell
volume). While this list is hardly exhaustive, the idea is to contemplate the effects of other
possible influences, as a routine check.

II. CAPILLARY-TISSUE EXCHANGE: CONVECTION, PERMEATION, REACTION
AND DIFFUSION

The two-compartment system from Figure 1 is here modified to incorporate flow, as shown
in Figure 8, thus identifying V1 as the vascular region, the membrane as the capillary barrier, and
V2 as the tissue. The system is considered as a homogeneously perfused organ with constant
volumes and steady flow F in and out. Now, in order to put it into the context of substrate delivery
and metabolism, we switch to standard physiological representation of the units, defining them
per gram of organ mass. F, PS, and the consumption G have units ml g-1min-1, and the volumes
have units ml/g. This notation normalizes flows, substrate use, etc. to be independent of organ
mass.

To keep the system simple so as to focus on the blood-tissue exchange, the intratissue
consumption is considered to be a first order process, as if the substrate concentration is far below
the KD for an enzymatic reaction. The PS however is treated as a facilitated transport process
reduced in form to symmetric Michaelis-Menten type kinetics. (There are several assumptions
necessary for this simplification: instantaneous equilibration of substrate to transporter binding
site at both surfaces, bidirectionally identical rates at same rates for free and substrate-bound
transporter, no effect of transmembrane charge, rates independent of concentrations of other
solutes, reaction product not transported by the same carrier.)

A technique developed to distinguish individual processes involved in blood-tissue exchange
and reaction was the Multiple-Indicator Dilution (MID) technique. It was used first by Chinard
(1953, 1955) for the purpose of estimating the volumes of distribution for sets of tracers of
differing characteristics: the mean transit time volume, Vmtt = , where is the mean
transit time through the system. He did not estimate permeabilities as his studies were on highly
permeable solutes. Crone (1963) analyzed the technique, showing how it could be used to

F t× t
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estimate PS from the outflow curves for a simultaneous injection into the inflow of a solute and
impermeable tracer as shown in Figure 9, which diagrams an experimental setup for examining
the uptake of D-glucose in an isolated perfused heart as by Kuikka et al. (1986). L-glucose, the
stereo-isomer, serves as an extracellular, non-metabolized reference. A more realistic diagram of a
capillary–tissue exchange includes the endothelial cells and interstitial fluid, ISF, as shown in
Fig. 10.

To reduce this diagram to that of Figure 8 requires a further set of assumptions. For current
purposes these are that the endothelial layer, the interstitial fluid space and the plasmalemma of
the parenchymal cell can be represented by a single membrane, within which resides the
transporter with conductance PS This ignores the capacitance of these structures, which include
receptors and transporters.

To determine capillary permeability the relevant reference solute is one that does not escape
from the capillary blood during single transcapillary passage; for example, albumin is the relevant
reference solute to determine the capillary permeability to glucose. In this situation the albumin
dispersion along the vascular space may be assumed to be the same as that of the glucose; thus the
shape of the albumin impulse response, halb(t), accounts for the intravascular transport of all the
solutes. (L-glucose, an extracellular reference tracer with the same molecular weight and
diffusivity as D-glucose, is the extracellular reference for D-glucose, having the same capillary
PSc and the same interstitial volume of distribution, Visf. Having simultaneous data on such
reference tracers greatly reduces the degrees of freedom in estimating the parameters of interest
for D-glucose,)

While we have fully developed mathematical models for the system diagrammed in Fig. 10
(for example, Bassingthwaighte, Wang and Chan, 1989 and Bassingthwaighte Chan and Wang,
1992), including ones with facilitating transporters and sequences of reactions (Bassingthwaighte

Figure 8: A two compartment system for the facilitated exchange of solute C
between flowing blood and surrounding stagnant tissue. Solute binding in the
blood is neglected in this example. Flow F, g-1min-1, carries in solute at
concentration Cin, mM, and carries out a concentration Cout, mM. The rates of
permeation or reaction for tracer C* are determined by the concentration C of
tracee or mother solute. PS, ml g-1min-1, is a conductance, the permeability-surface
area product of the membrane separating the two chambers, allowing bidirectional
flux. G2 ml g-1min-1, is a reaction rate for a transformation flux such that the
product G2 C2 is mmole g-1min-1,.

C2, C*
2

PS

V1C1, C
*
1

V2

F
Cin Cout

G2

F
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et al., 2006), our present purpose is assess the accuracy of estimates of the permeability, PS, of the
capillary barrier to a solute.

An ideal set of reference solutes for evaluating a Fig. 10 model is listed in Table 2. Fitting
MID concentration-time curves for the first three classes of solutes with the model solutions
provides estimates of the parameters listed in the right column, and approximates or even gives
exactly the parameter values for the test substrate. For the test substrate the observed data are
fitted using only the few remaining free parameters for binding and reaction. To examine the
effects of model reduction, we will use only the intravascular reference marker and the solute of
interest which enters the parenchymal cell, of which V2 in Figure 8 is the analog.

Model Equations for Tracer:

The diagram in Fig. 10 differs dramatically from that of Figure 8, but with the assumptions
listed above reduces to the same model. Even so, one might debate what type of equations to use.
Capillaries are of the order of 1 mm long, and are 5 microns in diameter, an aspect ratio of 200
times. Consequently, considering the capillary as a stirred tank is impossible. Diffusional
relaxation times differ by a factor of 200 between radial and axial directions. The stirred tank
expressions, with no intravascular binding, are the same as Model 1B except for the addition of
the flow through compartment 1 and the consumption term G2 to the second compartment, and the
omission of binding from the first:

Figure 9: Schematic overview of experimental procedures underlying the
application of the multiple-indicator dilution technique to the investigation of
multiple substrates passing through an isolated organ without recirculation of
tracer. The approach naturally extends also to their metabolites.

Perfusate

Pump
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, and (21)

Figure 10: Representation of a blood-tissue model used for analysis of
indicator-dilution curves. F, plasma (perfusate) flow, ml g−1 min−1, PS,
permeability-surface areas, ml g−1 min−1, for passage through endothelial cell
luminal membrane (PSecl); water-filled channels or gaps between endothelial cells
(PSg); endothelial cell albuminal membrane (PSeca); and parenchymal cell
membrane (PSpc). G, intracellular consumption ml g−1 min−1 (metabolism) of
solute by endothelial cells (Gec) or by parenchymal cells (Gpc). V, ml g−1, volume
of plasma (Vplasma), endothelial cell (Vpc), interstitial (Visf) and parenchymal cell
(Vpc) spaces, the anatomic volumes, ml/g. (Figure from Gorman et al., 1986, with
permission from the American Physiological Society.)

Table 2: Reference tracers for a substrate

Solute class Example
Information provided by the solute

class

Intravascular Albumin Convective delay and dispersion
in all vessels perfused

Extracellular L-glucose Cleft PSg, and interstitial volume,
V ′isf

Unreacted but
transported analog

3-O-methyl
-D-glucose

Cell PSpc; intracellular volumes of
distribution, V ′pc and V ′ec

The test substrate D-glucose Binding space; reaction rates
inside cells, Gec, Gpc

dC*
1

dt
------------

F
V 1
------ Cin Cout+( ) PS

V 1
------- C*

1 C*
2–( )⋅–=
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(22)

The use of these ordinary differential equations (ODEs) implies and assumes a discontinuity
between the concentration of solute in the inflow and that in V1. Because V1 is assumed instantly
mixed the tracer entering the tank is immediately available to be washed out with the same
probability as any molecule dwelling in there for a longer time. In view of the long capillary
length and slowness of diffusion, the mixing chamber idea is untenable, unless there is no gradient
in solute concentration along the capillary.

The capillary-tissue unit of Fig 10 can also be reduced to two regions represented by partial
differential equations (PDEs) that allow continuity along the path between entrance and exit.
Using the spatially distributed analogs for plasma, Cp, or blood, and extravascular tissue, Ctiss, to
represent the lumped variables C1 and C2:

, (23)

and . (24)

where Cp and Ctiss are spatially distributed functions of both x and t, not just t. The axial position
is denoted by x, where 0 < x < L, the capillary length, cm. In the modeling the analogy is Fp = F,
Vp = V1, Vtiss = V2, and PSc = PS, the permeability-surface area of the capillary wall, but we retain
the two sets of names in order to make comparisons between the estimated parameter values. The
capillary length is arbitrarily set to an average value such as 0.1 cm. PDEs require boundary
conditions: at the capillary entrance, Cp(x=0, t) = Cin, so there is no discontinuity in the
concentration profile; at the exit Cout = Cp(x=L, t), as a result of the no-flux boundary condition
and the same condition described by the ODEs. The last term in each equation is the diffusion
along the length of the capillary-tissue regions; the use of an anatomically correct length then
makes using observed diffusion coefficients for Dp and Dtiss, cm2/s, practical and meaningful.
Gross exaggeration of the diffusion coefficients can be used in the equations to turn the
distributed model into a de facto well-mixed, compartmental model.

The flow term merits further explanation since it might appear that the sign in the first
right-hand side term of Eq. 23 differs from that of Eq. 21. Consider the inflow to contain a bolus
of solute: as it enters, the concentration at the capillary entrance rises. At this time, the slope of
the curve of concentration versus position x, , is negative; the spatial slope has always the
sign opposite to the temporal derivative at the same point, thus the negative sign on the
term.

Functionally, therefore Eqs. 23 and Eq. 24 are analogous to Eqs. 21 and Eqs. 22. But using
the PDEs avoid the unrealistic discontinuity in the compartmental model at the entrance, which is
the corollary to the instantaneous mixing within V1. Most important, the PDE allows continuity in
concentrations and concentration gradients along the capillary, and not only in concentration but

dC*
2

dt
------------

PS
V 2
------- C*

1 C*
2–( )

G2

V 2
------– C*

2⋅=

∂Cp x t( , )

∂t
--------------------

FpL–

V p
-------------

∂Cp

∂x
----------

PSc

V p
-------- Cp Ctiss–( ) Dp

∂2
Cp

∂x
2

------------+–⋅=

∂Ctiss x t( , )

∂t
-------------------------

PS– c

V ′ tiss
------------ Ctiss Cp–( )

Gtiss

V ′ tiss
------------Ctiss Dtiss+

∂2
Ctiss

∂x
2

-----------------–=

C x∂⁄∂
C t∂⁄∂
/userA/jbb/Desktop/737_2Feb.fm 20 May 6, 2009 3:30 pm



Principled Physiological Modeling (#737) Page 21
Figure 11: Pulse responses in axially-distributed models. The input function, Cin,
is a pulse of duration 1.4 seconds. Top panel: Outflow concentration-time curves
for (gray curve) a PDE numerical solution using a Lagrangian sliding fluid element
method and an intravascular dispersion coefficient, Dp = 2.6 x10-5 cm2/s, and for a
serial stirred tank algorithm representing a Poisson process with 109 stirred tanks
(black curve almost superimposed on the gray one). Bottom panel: Intracapillary
spatial profiles at a succession of times, 1.5, 2.0, 2.5, and 3.0 seconds, as the pulse
disperses and some of the solute permeates the capillary wall. Parameters were the
same for the Poisson model and the PDE: Fp = 1 ml g−1 min−1, PSC = 2
ml g−1 min−1, and tissue volume Vtiss was set to 10 ml g−1 so that there was no
tracer flux from tissue back to the plasma space.
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also in the properties of the system such as axial gradients in transporter and enzyme densities that
are evident in the liver sinusoid. For the following analysis, all parameters are assumed spatially
uniform so as to minimize the difference from the compartmental models. There are many ways
of representing axially distributed convecting systems, and two are shown in Figure 11: the usual
approaches solve the PDE using one of several PDE solvers (Poulain et al 1997 #10457), and here
we used a Lagrangian method (Bassingthwaighte et al 1992 #10371). A compartmental type of
alternative is to approximate the capillary as a series of stirred tanks, each with the same volume
and PS. With a large number of serial stirred tanks the longitudinal concentration gradient is
approximated well as the steps from one to the next are small. The intravascular transport process
with serial stirred tanks is a Poisson process. In modeling, serial stirred tanks are convient because
the number of tanks can be used as a free parameter: the relative dispersion over the length of the
tube is determined by Ntanks such that the relative dispersion RD, which equals the coefficient of
variation, induced during transit is , so that with 100 tanks the RD is 10%.

Figure 11, top panel, shows curves for the PDE solution and for the Poisson process that are
essentially similar, so that the dispersion coefficient Dp sufficed to create the same dispersion as
occurred with the Poisson process using 109 tanks. The permeative loss is the same for both
methods, with the result that the peak outflow concentrations are similar. Figure 11, bottom panel,
shows the shape of the bolus as a function of position as it deforms ever more from its initial
square pulse at the entrance to the capillary. Because the capillary PS > 0 there is loss of solute as
the bolus progresses along the capillary: the diminution in peak height is therefore due not only to
the spreading but to the loss. This loss is reflected of course in the reduction in the areas under the
successive plots of Cp(t, x) as solute escape into the extravascular region. (For this illustration the
value of V’isf is set so abnormally high that C isfremains negligible and there is no back flux from

ISF to plasma.).

Figure 12: Responses of the Nth order Poisson operator with Ntanks varied from 109 tanks in series
down to 50, 20, 10, 5, 2, and finally to a single mixing chamber, Ntanks = 1. The gray curve is the
Lagrangian solution to the PDEs as in Figure 11. All of the Poisson operator (black) outflow curves
have the same mean transit time, but differ in their shapes. The parameters were Vp = 0.05 and Vtiss
= 0.15 ml/g; Fp = 1 ml g−1 min−1, PSC = 1 ml g−1 min−1,

1 N kstan⁄
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While the Poisson operator with Ntanks set to a large number can be used to fit data, it is
computationally less efficient than solving the PDE directly, and the additional disadvantage that
the dispersion cannot be controlled independently of choosing Ntanks.The relative dispersion with
Ntanks = 10 is 0.318, and with Ntanks = 1 is 1.0. While finite element grids for solving the PDEs can
be rather coarse, e.g. 10 to 20 grid segments, in contrast when using the serial compartments Ntanks
must remain high to get shapes anything like those of the experimentally observed curves. Figure
12 illustrates the dramatic shape changes brought about by reduction of Ntanks All of the Poisson
operator outputs in the figure have mean transit times identical to that of the red reference curve.
The solutions using low Ntanks have excessively long low tails to balance the too early peaks.

Fitting data with the model functions. We chose as an example a set of indicator dilution curves
to which fitting a 3-region model is required, namely the uptake of adenosine in the heart wherein
the endothelial cell metabolism is neglected and the capillary wall is considered as one membrane
to cross, and thereby ignoring endothelial capacitance and reactions. The three regions are
capillary plasma, ISF, and parenchymal cell, using the terminology of Figure 10, and the
equations are Eqs. 23 and 24, the latter being for the ISF, and then adding a similar equation for
the parenchymal cell and accounting for exchanges between ISF and parenchymal cell. (The
3-region model and the Lagrangian sliding fluid element method of solution are detailed in
Bassingthwaighte et al. 1992). In Figure 13 are shown model fits to the three simultaneously

obtained experimental curves. The Lagrangian PDE solutions for the three cases are essentially

Figure 13: Multiple indicator dilution experimental curves fitted simultaneously with

three-region PDE (shown) and serial compartmental models, using Ntanks= 80 for the latter (not

shown but identical to PDE solution for long times). The parameters were Vp = 0.1 and Visf = 0.4

ml/g; Fp = 2.8 ml g−1 min−1 (experimental value); PSC = 0.019 ml g−1 min−1,for albumin, 1.3 for

AraH, and 3.0 for adenosine; PSpc = 25 ml g−1 min−1 and Gpc = 104 ml g−1 min−1 for adenosine

(both zero for other tracers) and Vpc = 0.55 ml/g. Data from Schwartz et al. (2000).
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identical to the serial stirred tank model solutions, using identical values for all of the
physiological parameters, the flows, volumes, permeabilities, and consumption in the
parenchymal cell, Gpc. The value for Gpc was set to a high value for this illustration and was not
optimized, in accord with the fact that almost no tracer adenosine returns from the cell to the
effluent plasma. The point of the Figure 13 is that so long as the models account appropriately for
the intracapillary concentration gradients, the three anatomic volumes, the observed flow, and
have the same intravascular dispersion, then the estimates of permeabilities are the same from the
two models. When volumes and flows are the same then, by mass conservation, the mean transit
times are forced to be the same.

However if the representation of the convective region is compromised by using fewer
compartments, errors must be introduced into other parameters in order to fit the data. Figure 14
shows that the model solution can be obtained to fit the albumin data even with Ntanks as low as 15.
Achieving such a result with Ntanks= 15 is fore-ordained with the method used here and has no
scientific value; because are no data on the input function, an input function was constructed of
arbitrary form by an iterative procedure (in effect a deconvolution) until the output at the known
flow fitted the albumin curve, so the satisfactory fit is merely a self-fulfilling prophecy. If one
wishes to fit the data with Ntanks< 15, then a new input function must be estimated so as to fit the
albumin curve. This works for any number of tanks, illustrating that the choice of a model to fit
the data is completely arbitrary and has no relation to the reality of the choice of a compartmental
model. The corollary is that the anatomic and physiological parameters will be estimated
erroneously. (The lesson: record the real input function during the experiment.).

Since it is often difficult experimentally to record the input function, this is a common
predicament. What is demanded however, is that in order to elicit parametric information at the
capillary-tissue exchange level one must use the same input function for the whole set of data
curves, e.g. the set in Figure 13. The failure of compartmental analysis is exemplified by the
results shown in Figure 15 with the same data set as in Figure 13. In the top panel, using Ntanks=
15 the parameters are almost the same as estimated using the PDE solution (Figure 13) or
using Ntanks= 109. However, with Ntanks= 1 (bottom panel) the parameters are
systematically different., overestimating PSC at 20 compared to 3 and underestimating PSpc at 7,
compared to 20 ml g−1 min−1,while Gpc is only modestly underestimated at 60 compared to 90
ml g−1 min−1. The interstitial volume, Visf, is also underestimated at 0.20 ml/g compared to 0.33 to
0.4 ml/g. While for Ntanks= 1 (bottom panel) the input function allowed a good fit to the first 20
seconds of the curves, the tails could not be closely fitted. The single tank convective region
forces the tail to become monoexponential. earlier than is seen for the more spatially distributed
models. (They all become monoexponential eventually.) Table 3 shows the results for other values
of Ntanks, where it can be seen that the estimates tend to deviate in a systematic fashion as
Ntanks diminishes. As Ntanks diminishes from 15 to 5, 2, and 1, the estimate of PSC rises 6 fold,
PSpc diminishes 30% for AraH and 70% for Ado, Visf for AraH by 35%, Vpc rises 40% for AraH,
and Gpc for Ado falls 30%.

The inference is clear. Given that one has trust in the physically realistic PDE version of the
physical situation, constrained as it is by using values for the regional volumes taken from the
anatomy, then the compartmental models systematically and progressively deviate from the
physiological values even though the curves can be fitted not too badly. In no case did single
stirred tank models fit well (Ntanks= 1, lower panel of Figure 15), but for larger values of Ntanks the
fits were quite good. Now it is obvious that getting a good fit to the selected tracer dilution curves
alone fails to guarantee sensible results. In every study there are other data, usually ignored, such
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as the anatomy, other known physiological features, ionic or transmembrane charges, pH,
previously identified reactions, binding sites and so on, that should be used in the analysis. When
these “knowns” are incorporated into the scheme, and the basic conservation rules applied, then
one starts to get physiologically valuable parameters and an understanding of the system.

Figure 14: Fitting the intravascular reference 131I-Albumin curve with the serial
stirred tank model with Ntanks= 15 gives a good fit. Top panel: Linear plot showing
short time transients. Using fewer compartments Ntanks= 5, 2, and 1, results in
outflow concentration time curves that do not fit the experimental data, the model
curves being too low peaked and too dispersed in time. Bottom panel:
Semilogarithmic plot to show the whole data set. The misfitting of the upslope
and peak of the curve which is so obvious in the top panel is less apparent (though
it is exactly the same) but the tail of the albumin curve is fitted well by all of the
models.
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To get closer to reality, the models have to be more complex. For example, the capillary wall
is tiled with endothelial cells with transport occurring through interendothelial clefts and across
the endothelial cell bodies, so PSC actually represents a sum of two conductances in parallel, a
transendothelial facilitated transport process and passive diffusion through the interendothelial
cleft (Schwartz et al 2002); to account for this in the analysis the more complex model (of the

Figure 15: MID curves for 131I-Albumin, 14C-AraH, and 3H-Adenosine fitted using the serial

tank model and a common input function. Top panel: Ntanks= 15 as in Fig 14. Curves fitted almost

as well as with the PDEs used in Figure 13. Parameters for the adenosine curve were Fp = 2.8

(experimental data), PSC = 3, PSpc = 20, and Gpc = 90 ml g−1 min−1, with Vp = 0.11, Visf = 0.33 and

Vpc = 0.55 ml/g. Bottom panel: Ntanks= 1. The albumin curve is well fitted, but the input function

differs from that used in the top panel. Parameters for the adenosine curve were PSC = 3, PSpc = 7,

and Gpc = 60 ml g−1 min−1, with Vp = 0.10, Visf = 0.20 and Vpc = 0.55 ml/g.

Ntanks = 1

Ntanks = 15
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form shown in Figure 10) is used to account separately for cleft permeation and transendothelial
flux.

Discussion:

Metabolic events within cells are intimately linked with the external influences of substrate
delivery and metabolite removal. These influences include the rates of transport by blood flow and
transmembrane processes as well as the regulation of enzymatic reactions. Further influences
include intravascular and intracellular binding, where one finds the influences discussed in
Section I. An obvious example is that the transport of respiratory gases through the circulation is
dominated by their binding and buffering in the blood, which in turn influence their rates of
delivery and exchange. In Section I we showed that errors in parameterization occur when the
assumption of instantaneous binding is incorrect to various degrees. A second inference is that
parameter values obtained during steady state cannot be expected to have validity during a
changing state, nor in a subsequent steady state where concentrations differ from those in the
initial steady state.

Solute binding is common for pharmacologic agents, hormones, vitamins, and the body’s
normal constituents like fatty acids. In fact one can generalize by saying that most lipid soluble
substances are carried in sequestered or bound form in the blood and that their fluxes into tissues
and cells are facilitated by transporter proteins.

In Section II the emphasis is not merely a comparison of the efficacy of distributed versus
compartmental models, but on the critical need to incorporate what is known about a system into
the analysis. Accounting for the anatomy is as important as obeying conservation requirements. In
general one needs to adhere to the constraints provided by prior studies, the anatomy being
primary since it is usually well defined. Anatomy is accounted for by using PDEs in
capillary-tissue exchange processes; failure to use anatomic information and to seek the simplicity
of “minimal models” sacrifices the reality of estimates of the primary physiological parameters,
particularly those like the permeability-surface area products, the membrane PSs, which dominate
the kinetics: Single compartmental analysis gives estimates up to several-fold different from those
emerging from high resolution analysis using the anatomic constraints. Qualitative compartmental

Table 3: Parameter Estimates at differing Ntanks

Species Ntanks = 15 5 2 1

14C-AraH

PSc, ml g−1 min−1 1.4 1.3 2.0 8.0

PSpc, ml g−1 min−1 1.0 0.85 0.65 0.7

Visf, ml g−1 0.33 0.3 0.28 0.2

Vpc, ml g−1 0.2 0.22 0.25 0.28

3H-Adenosine

PSc, ml g−1 min−1 3 3 5 20

PSpc, ml g−1 min−1 20 20 9 7

Vpc, ml g−1 0.55 0.55 0.55 0.55

Gpc, ml g−1 min−1 90 70 70 60
Footnote: No free parameters for fitting the Albumin curve.

For the adenosine (Ado) analysis Vpc was fixed at 0.55 ml/g, and
not optimized. All other parameters were estimated from the data.
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modeling is certainly useful for categorization or classification, and there are situations in which
physical or physiological parameters are correctly estimated, given the veracity of the
compartmental mixing assumption. This essay is an attempt to stimulate each modeler’s curiosity
and thoughtful assessment of the applicability of stirred tank aproximations.

ACKNOWLEDGEMENTS

 Research supported NIH grants BE 001973, HL73598, and NSF grant 04-607/NIH.
James Eric Lawson assisted with manuscript preparation. The models described here are
available at http://www.physiome.org/models/.

REFERENCES:

10102. Bassingthwaighte JB, Yipintsoi T, and Harvey RB. Microvasculature of the dog left
ventricular myocardium. Microvasc Res 7: 229-249, 1974.

10312. Bassingthwaighte JB, Wang CY, and Chan IS. Blood-tissue exchange via transport
and transformation by endothelial cells. Circ Res 65: 997-1020, 1989.

10371. Bassingthwaighte JB, Chan IS, and Wang CY. Computationally efficient algorithms
for capillary convection-permeation-diffusion models for blood-tissue exchange. Ann Biomed
Eng 20: 687-725, 1992.

10573. Bassingthwaighte JB and Vinnakota KC. The computational integrated myocyte. A
view into the virtual heart. In: Modeling in Cardiovascular Systems. Ann. New York Acad. Sci.
1015:, edited by S. Sideman and R. Beyar. 2004, p. 391-404.

10596. Bassingthwaighte JB, Raymond GR, Ploger JD, Schwartz LM, and Bukowski TR.
GENTEX, a general multiscale model for [italic] in vivo [plain] tissue exchanges and intraorgan
metabolism. Phil Trans Roy Soc A: Mathematical, Physical and Engineering Sciences 364(1843):
1423-1442, 2006.

7311. Beard DA, Liang S, and Qian H. Energy balance for analysis of complex metabolic
netw orks. Biophys J 83: 79-86, 2002.

38. Berman M. The formulation and testing of models. Ann NY Acad Sci 108: 182-194,
1963.

87. Chinard FP, Vosburgh GJ, and Enns T. Transcapillary exchange of water and of other
substances in certain organs of the dog. Am J Physiol 183: 221-234, 1955.

Cobelli C, Foster D, and Toffolo G. Tracer Kinetics in Biomedical research. From data to
model. Kluwer Academic/Plenum Publishers, New York, 2000.

99. Crone C. The permeability of capillaries in various organs as determined by the use of
the ‘indicator diffusion’ method. Acta Physiol Scand 58: 292-305, 1963.
/userA/jbb/Desktop/737_2Feb.fm 28 May 6, 2009 3:30 pm

http://www.physiome.org/model/doku.php?id=Cardiac_output_estimation_in_reference_human:model_index


Principled Physiological Modeling (#737) Page 29
Dash RK and Bassingthwaighte JB. Blood HbO2 and HbCO2 dissociation curves at varied O2,
CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 32: 1676-1693, 2004.

Dash RK, Li Z, and Bassingthwaighte JB. Simultaneous blood-tissue exchange of oxygen, carbon
dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34: 2006.

10234. Gorman MW, Bassingthwaighte JB, Olsson RA, and Sparks HV. Endothelial cell
uptake of adenosine in canine skeletal muscle. Am J Physiol Heart Circ Physiol 250: H482-H489,
1986.

International Commission on Radiological Protection. Basic Anatomical and Physiological Data
for Use in Radiological Protection: Reference Values. New York: Elsevier Science, 2003, 320 pp.

Kassab GS, Rider CA, Tang NJ, and Fung Y-CB. Morphometry of pig coronary arterial trees. Am
J Physiol Heart Circ Physiol 265: H350-H365, 1993.

10233. Kuikka J, Levin M, and Bassingthwaighte JB. Multiple tracer dilution estimates of D-
and 2-deoxy-D-glucose uptake by the heart. Am J Physiol Heart Circ Physiol 250: H29-H42,
1986.

320. Krogh A. The number and distribution of capillaries in muscles with calculations of the
oxygen pressure head necessary for supplying the tissue. J Physiol (Lond) 52: 409-415, 1919.

10458. Li Z, Yipintsoi T, and Bassingthwaighte JB. Nonlinear model for capillary-tissue
oxygen transport and metabolism. Ann Biomed Eng 25: 604-619, 1997.

10457. Poulain CA, Finlayson BA, and Bassingthwaighte JB. Efficient numerical methods
for nonlinear facilitated transport and exchange in a blood-tissue exchange unit. Ann Biomed Eng
25: 547-564, 1997.

10529. Schwartz LM, Bukowski TR, Ploger JD, and Bassingthwaighte JB. Endothelial
adenosine transporter characterization in perfused guinea pig hearts. Am J Physiol Heart Circ
Physiol 279: H1502-H1511, 2000.

7931. Vinnakota K, Kemp ML, and Kushmerick MJ. Dynamics of muscle glycogenolysis mod-
eled with pH time-course computation and pH dependent reaction equilibria and enzyme kinetics.
Biophys J doi:10.1529/biophys.105.073296: 1-64, 2007.

10572. Vinnakota K and Bassingthwaighte JB. Myocardial density and composition: A basis
for calculating intracellular metabolite concentrations. Am J Physiol Heart Circ Physiol 286:
H1742-H1749, 2004.

10084. Yipintsoi T, Scanlon PD, and Bassingthwaighte JB. Density and water content of dog
ventricular myocardium. Proc Soc Exp Biol Med 141: 1032-1035, 1972.
/userA/jbb/Desktop/737_2Feb.fm 29 May 6, 2009 3:30 pm


	Tracers in Physiological Systems Modeling
	Joseph C. Anderson and James B. Bassingthwaighte Department of Bioengineering University of Washington Seattle, WA 98195 - 5061
	Abstract

	INTRODUCTION
	1. Use the known anatomy, structure, and composition to constrain estimates of local and overall volumes of distribution, routes of transport, and other kinetic possibilities. These are not necessarily measured in every experiment, but in gen...
	2. Define parameters and variables in physiologically meaningful terms in order to stimu late re-examination of assumptions at each stage. Consider the details of the underlying phys iology in defining the model in order to constrain its form...
	3. Apply conservation principles (mass, charge, volume, energy), and relevance to a viable steady state, preferably checking for these in each program. Provide thermodynamic con straints on all reactions. DG counts. Use units in defining all ...
	4. Recognize that the fundamental description of the kinetics of tracers is always at the molecular level, therefore “think like a molecule” on how each process occurs: Convected in in the blood in a bound or free state? How is the membrane t...
	5. Adhere to standard requirements for the design, performance, documentation, and dissemi nation of models. The goal in presenting a model is easy and accurate reproducibility by a user community of researchers, teachers, and students. Check...
	APPROACHES AND METHODS
	Definition of tracer, C*:
	, (1)
	. (2)
	, (3)

	Writing dual models for tracee and tracer together:
	Model 1: Binding site in compartment 1 of a 2-compartment system, Non-tracer
	Model 1A: Non-instantaneous binding (equivalent to a 3 compartment system)
	Figure 1: A two compartment system for the passive exchange of solute C between the stirred tanks. In tank 1 the solute may bind with a ligand B whose total concentration is BT, mM, in accord with the reaction shown at right. The reaction rat...
	, (4)
	, (5)
	, (6)
	. (7)
	Figure 2: Equilibration of C across a barrier with a binding ligand in V1. for increasing values of kON from 0.3 to 100 mM-1s-1. Top panel: The initial concentration C1 was as if 1 mmole of C were injected in a volume V1 of 1 ml at t = 0. Par...


	Model 1B: Instantaneous binding of solute to ligand in Compartment 1:
	, and (8)
	, and (9)
	(10)
	(11)
	. (12)
	, (13)
	(14)
	(15)
	Figure 3: Top panel. Volumes of distribution, V1p (Eq13) for equilibrium binding and Vd (Eq14) for an unsteady state of increasing C1 versus concentration C1. Bottom panel. The in silico experiment was to raise the concentration C1 at an acce...

	, (16)
	, (17)
	, and (18)
	(19)
	Figure 4: Tracer added (right panels) after tracee and binding site have equilibrated (left panels) with KD=0.1 mM, BT=1 mM, and V1=V2=1 mM. Curves denoting tracer transients in right panels follow equilibration in left panels. Top panels: Wi...

	(20)
	Figure 5: Tracer transients, C*, when there is solute binding and permeation. Model parameters are BT = 1 mM, KD = 0.4 mM, V1 = V2 =1 ml, PS = 1 ml/s. At t = 10 s, a bolus of tracer is inserted into V1 as a narrow Gaussian pulse (mean time = ...



	Estimating model parameters while making the erroneous equilibrium assumption:
	Figure 6: Optimization trial of the 2-equation pseudo-equilibrium model to fit C1* “data” on tracer transient computed using the full 3 equations. Top panel: The model curve (thin line) fits the “data” (open circles) for C1*, but the paramete...
	Table 1: Results of Optimizing the 2-Eq Equilibrium Model Eq. 19 and Eq. 20 to Fit 3-Eq “Data” as shown in Figure 6.

	0.734
	0.014
	0.562
	0.045
	0.201
	0.651
	2.229
	0.813
	0.033
	0.008
	0.252
	0.001
	0.869
	0.485
	1.247
	1.246
	1.247
	1.246
	1.246
	1.246
	1.246
	0.671
	1.116
	0.038
	1.073
	0.483
	0.723
	0.230
	2.254
	2.254
	2.254
	2.254
	2.254
	2.254
	2.254
	221.9
	221.9
	220.5
	221.9
	221.8
	221.9
	221.9
	Figure 7: Optimization to fit the 2-Eq model to the 3-Eq model solution assuming the absence of any ligand binding in V1 or V2. The matching of the C1* data (open circles) by the 2-Eq model is as good as that in Fig 6, but the parameter value...
	II. CAPILLARY-TISSUE EXCHANGE: CONVECTION, PERMEATION, REACTION AND DIFFUSION
	Figure 8: A two compartment system for the facilitated exchange of solute C between flowing blood and surrounding stagnant tissue. Solute binding in the blood is neglected in this example. Flow F, g-1min-1, carries in solute at concentration ...
	Figure 9: Schematic overview of experimental procedures underlying the application of the multiple-indicator dilution technique to the investigation of multiple substrates passing through an isolated organ without recirculation of tracer. The...
	Figure 10: Representation of a blood-tissue model used for analysis of indicator-dilution curves. F, plasma (perfusate) flow, ml g-1 min-1, PS, permeability-surface areas, ml g-1 min-1, for passage through endothelial cell luminal membrane (P...
	Table 2: Reference tracers for a substrate

	Model Equations for Tracer:
	, and (21)
	(22)
	, (23)
	and . (24)
	Figure 11: Pulse responses in axially-distributed models. The input function, Cin, is a pulse of duration 1.4 seconds. Top panel: Outflow concentration-time curves for (gray curve) a PDE numerical solution using a Lagrangian sliding fluid ele...
	Figure 12: Responses of the Nth order Poisson operator with Ntanks varied from 109 tanks in series down to 50, 20, 10, 5, 2, and finally to a single mixing chamber, Ntanks = 1. The gray curve is the Lagrangian solution to the PDEs as in Figur...


	Fitting data with the model functions.
	Figure 13: Multiple indicator dilution experimental curves fitted simultaneously with three-region PDE (shown) and serial compartmental models, using Ntanks= 80 for the latter (not shown but identical to PDE solution for long times). The para...
	Figure 14: Fitting the intravascular reference 131I-Albumin curve with the serial stirred tank model with Ntanks= 15 gives a good fit. Top panel: Linear plot showing short time transients. Using fewer compartments Ntanks= 5, 2, and 1, results...
	Figure 15: MID curves for 131I-Albumin, 14C-AraH, and 3H-Adenosine fitted using the serial tank model and a common input function. Top panel: Ntanks= 15 as in Fig 14. Curves fitted almost as well as with the PDEs used in Figure 13. Parameters...
	Table 3: Parameter Estimates at differing Ntanks


	1.3
	2.0
	8.0
	0.85
	0.65
	0.7
	0.3
	0.28
	0.2
	0.22
	0.25
	0.28
	3
	5
	20
	20
	9
	7
	0.55
	0.55
	0.55
	70
	70
	60
	Discussion:




