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Bassingthwaighte JB, Chinn TM. Reexamining Michaelis-Men-
ten enzyme kinetics for xanthine oxidase. Adv Physiol Educ 37:
37–48, 2013; doi:10.1152/advan.00107.2012.—Abbreviated expres-
sions for enzyme kinetic expressions, such as the Michaelis-Menten
(M-M) equations, are based on the premise that enzyme concentra-
tions are low compared with those of the substrate and product. When
one does progress experiments, where the solute is consumed during
conversion to form a series of products, the idealized conditions are
violated. Here, we analyzed data of xanthine oxidase in vitro from
Escribano et al. (Biochem J 254: 829, 1988) on two conversions in
series, hypoxanthine to xanthine to uric acid. Analyses were done
using four models: standard irreversible M-M reactions (model 1),
Escribano et al.’s M-M forward reaction expressions with product
inhibition (model 2), fully reversible M-M equations (model 3), and
standard differential equations allowing forward and backward reac-
tions with mass balance accounting for binding (model 4). The results
showed that the need for invoking product inhibition vanishes with
more complete analyses. The reactions were not quite irreversible, so
the backward reaction had a small effect. Even though the enzyme
concentration was only 1–2% of the initial substrate concentrations,
accounting for the fraction of solutes bound to the enzyme did
influence the parameter estimates, but in this case, the M-M model
overestimated Michaelis constant values by only about one-third. This
article also presents the research and models in a reproducible and
publicly available form.

enzyme kinetics; Michaelis-Menten; Briggs Haldane; product inhibi-
tion; reaction reversibility; endothelial purine metabolism; blood-
tissue exchange processes; models as hypotheses; constrained param-
eter estimation; simultaneous optimization of multiple data sets;
xanthine oxidoreductase; EC 1.17.3.2; reproducible research; JSim
simulation analysis system

ENZYMES are proteins that catalyze chemical reactions, often
speeding them up by many orders of magnitude, even more
than a factor of a million. The mechanisms by which this
facilitation is achieved are not well understood, but a few
events are common to all: one or more substrates bind to a
special site within the enzyme, forming the enzyme-substrate
complex; within the complex, intermolecular forces deform the
substrate so that the energy required for the reaction is reduced
and the chemical transition occurs; and, finally, the products of
the reaction are released from the complex. In theory, such
reactions can go both backward and forward, but the normal
occurrence is that the net change is in a direction from a higher
to a lower energy level.

Most often, the kinetics of enzymatically facilitated reac-
tions are characterized using the mathematically simple ap-
proach pioneered by Michaelis and Menten (1913). The equa-
tion for the reaction flux from the substrate to the product is as
follows:

�dS ⁄ dt �
Vmax � S

Km � S
� dP ⁄ dt (1)

where S is the concentration of the substrate (in �M) and P is
the concentration of the product (in �M), and both are consid-
ered to represent their chemical activities (or an activity coef-
ficient � 1.0 for all the substrates). Km is the Michaelis
constant (in �M), and Vmax is the maximal flux (in �M/s),
attained when S �� Km. When S � Km, flux (dS/dt) is
�Vmax/2. The basic assumptions are that substrates bind rap-
idly to the enzyme, a process in which the substrates are
deformed sufficiently to make the reaction occur more readily,
and the reaction products are then released, freeing the enzyme
to repeat the operation. The original concept was that the
reaction was unidirectional and that the enzyme concentration
was so low that the substrate binding to the enzyme did not
account for a significant fraction of its concentration. That such
reactions are actually more complex than this is well appreci-
ated (20), but the fact is that characterization via Michaelis-
Menten (M-M) kinetics has stood the test of time exceedingly
well, and much of the data in the literature provide the M-M
parameter Km rather than the thermodynamically appropriate
dissociation constant (Kd).

This exploration of M-M approaches to enzyme kinetics is
designed to stimulate students to examine a familiar approach
to enzymatic reaction kinetics at a deeper level, to evaluate
some underlying assumptions, and to learn how to use model-
ing as a method for appraising ideas and assumptions. The
target “students” are both undergraduate and graduate students
who have had introductory chemistry or biochemistry. The
material, models, and modeling systems are available in source
code for classroom use or for use over the Web, where the
models can be run and revised or downloaded and run in
seconds. For class use, this essay serves as an introduction to
data analysis and interpretation. Here, we start with data sets of
the concentration-time curves of a series of reactions, exem-
plary of a short segment in a metabolic network. By dividing
the class into four groups and assigning each group to evaluate
one of the four hypotheses expressed by the four variant
models, we initiated a competition and a debate. Having the
class prepare ahead of time by reading the article familiarizes
them with the idea that there are choices to be made in how to
describe reactions. Comparing parameters elicited through the
different hypotheses (models) stimulates debate over which
approaches best serve particular purposes for analyzing such
data. A principal benefit is the increase in awareness of the
fundamental concept that all reactions are reversible. A second
benefit is to put the modeling in the context of Einstein’s
dictum that “a model should be as simple as possible, but not
too simple,” a succinct statement that harbors a wide range of
complexity.

In this study, we chose xanthine oxidase (XO) as an exem-
plary, well-studied enzyme for much data are available. This
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enzyme is an oxidoreductase: it is more complex than the
simplest enzymes since it can fluctuate between two forms,
the oxidase and the reductase; at high O2 tensions, it exists in
the oxidase form, fostering oxidation, but the reactions can be
reversed under reducing conditions: xanthine can be formed
through uric acid binding to XO. The experiments studied here
were done at high O2 tension so that XO remained solely in the
oxidase form. Its nominal function is the oxidation of the
purine nucleoside breakdown product hypoxanthine (Hx) to
xanthine (Xa) and then, in a second oxidation step, Xa to uric
acid (Ua), as shown in Fig. 1.

The reactions from Hx to Xa to Ua are facilitated by XO in
guinea pig endothelial cells. In contrast, rabbit myocardial
endothelial cells lack XO, so the degradation of purine nucleo-
sides, adenosine and inosine, stops at Hx (18). Cao et al. (5)
observed that at low pH, a small amount of the closely related
6,8-dihydroxypurine formed as an intermediate in the reaction
and that it also degraded to Ua; at pH 8.5, almost none formed,
so in our analysis this potentially complicating reaction is not
considered.

To examine the applicability of the M-M concept and the
accuracy of the kinetics it predicts, we chose the data of
Escribano et al. (10) since they are well described and we
judged them to be of high accuracy. The data illustrate progress
curves of Hx ↔ Xa ↔ Ua and Xa ↔ Ua. We used four
different models and compared their goodness of fit and their
parameters under M-M conditions. Model 1 is the classic M-M
unidirectional model, assuming an independent Vmax for the
two irreversible reactions, even though only one enzyme is
involved. Model 2 is similar but adds a degree of inhibition by
Ua to both reaction and exactly uses the equations of Escribano
et al. (10). Model 3 uses reversible M-M reactions for the two
reactions, following Hofmeyr (12); this is thermodynamically
reasonable, contrasting with models 1 and 2, but does not
account for the amounts of the substrate bound to the enzyme.
Model 4 accounts for the substrate bound to the enzyme and
distinguishes the on and off binding-unbinding processes from
the reaction steps, which are reversible. Of the four models,
this is the only one accounting for the total mass of free and
bound substrate. In the experiments, the enzyme concentration
was 1 �M, which amounted to 2% of the initial Hx concen-
tration in the first experiment, Hx ¡ ¡ Ua, and 1% of the
initial Xa in the second experiment, Xa ¡ Ua, so the condi-
tions were not strikingly different from ideal M-M conditions.
The bottomline questions are whether or not the different
models give significantly differing estimates of Vmax and Kd

and, assuming that model 4 is the “correct” model, how much
error results from using the simpler models.

The rationale for studying XO was its importance in free radical
generation through the oxidation process. While XO is virtually
absent from cardiac and endothelial cells in rabbit and human
hearts (11, 18), XO is released into the circulation in a variety of
circumstances from the gut, liver, and other organs. Circulating
XO binds to endothelial surfaces in the lung and heart and appar-
ently accumulates in the interstitium, binding to matrix constitu-
ents, reaching concentrations several thousandfold higher than in
plasma. Houston et al. (13) showed that the activity level of XO
is unimpeded by this sequestration and binding and, furthermore,
that surface-bound XO is endocytosed and continues its high rate
of free radical generation intracellularly.

From the point of view of enzyme kinetics, XO is remark-
able in that it catalyzes two successive reactions. We do not
know whether the first reaction product, Xa, is released from
the enzyme and then rebinds to undergo the second step or
remains within the enzyme awaiting the next reaction. The
hypothesis underlying the modeling, in all of the models we
tested, is that Xa becomes entirely free and then rebinds, a pure
so-called ping-pong arrangement. In the experiments of
Schwartz et al. (8), we observed that in studies of the cellular
uptake of tracer-labeled adenosine and inosine in guinea pig
hearts, which have XO, that very little Hx and Xa are released
into the venous outflow, but that large amounts of Ua are. This
could be due to the adherence of Hx and Xa to XO or possibly
to low endothelial membrane permeability.

A secondary objective of this study was to present an
approach to reproducible research in modeling biology. All of
the models are provided to the reviewers and readers so that the
models can be run over the Web without inhibition by identi-
fication. They can be downloaded and run on the reader’s home
computer; they are written as open-source models and run on
an open source and freely downloadable simulation platform,
JSim. The combination of the publication and supporting
operational models should make this research completely re-
producible. While the models are currently available on the
Physiome website (www.physiome.org/Models), they are also
being put up on the Biomodels database in SBML.

METHODS

Experimental Methods

Experimental methods were given in detail by Escribano et al. (10)
and are standard for the field. In brief, the substrate (either Hx or Xa)

Fig. 1. Hypoxanthine (Hx; left), xanthine (Xa; middle), and uric acid (Ua; right). The successive oxidations are aided by xanthine oxidase (XO; EC 1.17.3.2,
formerly EC 1.2.3.2 and EC 1.2.3.22) in the presence of oxygen. The molecular masses are 136.1, 152.1, and 168.1 Da.
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was added to a solution of 0.27 mg/ml XO in 30 mM Tris·HCl buffer
at pH 8.0 and 25°C and at an O2 concentration of 0.26 mM at time 0
and followed by ultraviolet spectroscopy over 210–310 nm to provide
estimates of Hx, Xa, and Ua approximately every 2.5 s, as shown in
the figures. Initial substrate concentrations were either 47 �M Hx or
93 �M Xa. The XO (bovine milk XO, EC 1.17.3.2) concentration,
with a molecular mass of 270,000 Da, was 1 �M.

Figures 4 and 5 of Escribano et al. (10) show the substrate and
metabolite concentrations as functions of time. Escribano et al.’s Fig.
4 shows the progress curves (concentrations vs. time as transforma-
tions occur) when starting with a Hx concentration of 47 �M.
Escribano et al.’s Fig. 5 shows the results starting with Xa at 93 �M.
The total concentration of XO was 1 �M in both. The concentration-
time data were captured in digital form by scanning the results of
Escribano et al.’s Figs. 4 and 5 (10) and converting the individual
points; the data sets were imported into JSim.tac files. The name .tac
denotes time-activity curves and assumes that activity coefficients of
the solutes are unity.

Principles of Simulation Analysis and Computation

The simulation analysis system, JSim, is designed for analyzing
data using mathematical models. Its strengths are the simplicity of
coding the equations, the graphics, and the tools for carrying the
modeling process through from design and testing to the evaluation of
results. The coding requires defining the variables and their depen-
dency on time or space or both and the parameters for reaction
rates or flows and then the equations and their initial and boundary
conditions. One clicks on variable lists to choose which parameters to
plot on the graphs. Visualization of solutions is the fastest way to
figuring out how the system works. As a thoughtful reviewer of this
report put it:

The power JSIM provides for students, as they develop their
scientific expertise, is to help them practice visualization and
mathematical skills that are often implicit in science. Reasoning
with visualization includes decoding the symbolic language,
interpreting and using representations to solve a problem,
translating horizontally across multiple representations such as
mathematical equations, chemical reactions, and graphical rep-
resentations of real and simulated data.

Model verification. Model verification is the demonstration that the
mathematics and the numerical solutions are correct. The process is
initiated during precompilation by JSim’s automatic unit balance
checking, which identifies any imbalances of units across the equal
sign or within parentheses or in taking logarithms. Further verification
testing is done by determining the sensitivity of the numeric solutions
to step size in time or space and by comparing selected limiting cases
with analytic solutions. Determining that mass or energy or charge are
neither gained nor lost is critical for assessing a closed-system
calculation. Verification is the prerequisite to data analysis, as there is
no point fitting data unless the model solution is correct.

Model behavior. Model behavior can be understood most rapidly
by determining the effect of changes in parameter values. One can
change the values manually and rerun solutions or one can use “loop
mode,” that is, “loop” on sequences of single or multiple parameters
to visualize the magnitude and direction of the changes in model
solutions. Alternatively, one can use JSim’s sensitivity function cal-
culation to show the “change in model solution per unit change in a
parameter,” a handy visualization tool with a formal mathematical
meaning and quantitative display. This is illustrated for model 4.

Model validation. “Model ”validation,“ the testing of the model
against the data, is the heart of the science, but is actually a misnomer:
one can never prove that the model is correct, but the best one can do
is to say that it is ”compatible “ with the data. JSim provides a battery
of optimization methods for the automated iterative adjustment of
parameters to be fit the data, usually by minimizing the sums of
squares of the distances between the model solution and the data

points. There is nothing magical about using optimizers; the choice is
circumstantial since they all differ in their step-by-step adjustments,
and manual adjustment by the investigator/explorer is just as valid,
even if slower. A model providing close descriptions of data and
expressed in physicochemically valid equations is a useful ”working
hypothesis.“ Its value is as a transient, unproven but not disproven,
representation of the knowledge about the system and a description of
its behavior under the conditions prescribed. Our analysis of XO
kinetics in this report is for particularly precise in vitro conditions, so
we cannot rely on the same parameter values to fit the in vivo behavior
of the same enzyme when the intracellular conditions are so different
from those in the test tube. The modeling of intact physiological
system is therefore more complex and less reliable, requiring many
different experiments to satisfy ”validity“ of a working hypothesis.
Physiological and pharmacological modeling further require compat-
ibility with anatomic observations (volumes, flows, and local concen-
trations) as well as the physics and chemistry, else they should be
regarded as ”not valid“ and the estimated parameter values unreliable.

Evaluation. Evaluation follows successful fitting of model to data.
Parameter estimates depend on the goodness of fit, which, in turn,
depends on the noise and accuracy of the data in combination with the
reality and accuracy of the model. JSim calculates the covariance
matrix from the matrix of sensitivity functions at the point of best
fit in ”state space“ and, from this, the estimates of the parameter con-
fidence limits, giving the mean and SD. [State space is the n-dimen-
sional space defined by the number (n) of parameters being adjusted.]
The larger the n, the greater the estimated SDs and the ranges of
parameter values. (Statistical methods accounting for constraints on
the ranges are not well developed and need research.) JSim also
provides another method of parameter evaluation, a Monte-Carlo
method giving probability density functions of parameter values
estimated by adding noise to a solution and fitting it again, many
times; this is a highly reliable method for estimating the distribution
of estimates and is more informative than the covariance calculation,
which is dependent on local linear estimates of sensitivities.

Correlation matrix. The correlation matrix shows correlation
among the parameters for each parameter versus all of the others; it is
the covariance matrix divided by the variance. Values are between �1
and �1; parameter pairs with correlations close to unity (negative or
positive) are highly correlated and invite reexamination of the model
for interdependent parameters that should be eliminated by using
dimensionless groups or ratios. Often in systems with many parame-
ters, there are those with huge confidence ranges: these are those to
which there is little sensitivity. These invite setting them to fixed
values, thereby reducing the degrees of freedom while having little or
no influence on the estimates of the remaining free parameters. Both
of these situations will be illustrated in the XO models below.

Scientific evaluation. In scientific evaluation, we use all this infor-
mation, but in the larger context of what is known in the field, what
more needs to be learned, and what more is needed to firm up one’s
concept of the system. A part of this process is also to make
predictions: ”if this model is correct, then what role does it play in the
larger system surrounding it, and what would be the larger system
behavior if the model is modified.“ A thorough evaluation of poten-
tially useful predictions is the best route to refining the selection of
future experiments, with the overt goal of defining the definitive
experiments that distinguish between alternative hypotheses (17) or
have the power to disprove the current working hypothesis.

Methods of Analysis

The reaction sequence for the reversible XO enzymatic reactions is
as follows:

Hx � E ↔ EHx ↔ Xa � E ↔ EXa ↔ Ua � E

where E is free, unbound XO, EHx is XO bound to Hx or Xa, and EXa
is XO bound to Xa or Ua. In the equations, we use H, X, and U to
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represent the concentrations (in �M) of Hx, Xa, and Ua. A list of
model assumptions is provided in the APPENDIX. Table 1 shows the
meanings of the parameter values in the equations below and their
values as estimated from the Escribano et al. data sets.

Models. MODEL 1: UNIDIRECTIONAL M-M REACTIONS. In model 1,
unidirectional M-M-type reactions, the sequential steps are described
by the following three ordinary differential equations:

dH ⁄ dt � �
VmaxH � H ⁄ KmH

1 � H ⁄ KmH � X ⁄ KmX
(2)

dX ⁄ dt �
VmaxH � H ⁄ KmH � VmaxX � X ⁄ KmX

1 � H ⁄ KmH � X ⁄ KmX
(3)

dU ⁄ dt �
VmaxX � X ⁄ KmX

1 � H ⁄ KmH � X ⁄ KmX
(4)

where Km denotes Michaelis constants (in �M) and Vmax denotes
forward reaction rates (in �M/s) for Hx and Xa. The model assumes
that the total enzyme concentration (Etot) is negligible compared with
substrate concentrations. While this may be reasonable when the

substrate is initially added to the solution containing the enzyme, it is
obviously untrue when the substrate is nearly consumed.

Michaelis and Menten (16) derived the summarizing expression,
represented by Eq. 2, from chemical rate equations by making the
assumption that the rates of substrate binding and unbinding from
the enzyme were rapid compared with the rate of conversion of the
substrate to the product. This implies that Km is close to Kd (in �M),
the dissociation constant for equilibrium binding [Kd � koff/kon, where
koff (in 1/s) is the rate of dissociation and kon (in �M�1·s�1) is the rate
of binding]. These reactions are found below in model 4, the full
reaction set, where in Eq. 12, kon is kfH, the parameter denoting the
forward binding of Hx to E, and koff is kbH, the parameter denoting the
unbinding or off rate. The Vmax terms are the forward (in this case)
reaction rates to form the product, with units of moles per unit volume
per unit time or concentration/time: Vmax � Etot � kreact, where Etot

is the enzyme total concentration (in �M) and kreact is the forward
reaction rate (in 1/s).

The terms modifying VmaxH, such as H/KmH in Eq. 2, define,
together with the denominator, the fractional saturation of the enzyme
with the substrate H. For example, when H � KmH, the enzyme is half

Table 1. Glossary and parameter estimates

Parameter Definition Value Units

Model 1 (MM2_irrevers, M-M equations)

VmaxH Maximum rate that the enzyme catalyzes Hx ¡ Xa 1.836 � 0.015 �M/s
KmH Dissociation constant for Hx-XO complexes 3.68 � 0.18 �M
VmaxX Maximum rate that the enzyme catalyzes Xa ¡ Ua 1.96 � 0.11 �M/s
KmX Dissociation constant for Xa-XO complexes 5.95 � 0.27 �M

Model 2 (MMinhib, Escribano et al.’s M-M equations with Ua product inhibition)

VmaxH Maximum rate that the enzyme catalyzes Hx ¡ Xa 1.755 � 0.01 �M/s
KmH Dissociation constant for Hx-Xo complexes 2.46 � 0.12 �M
VmaxX Maximum rate that the enzyme catalyzes Xa ¡ Ua 1.95 � 0.01 �M/s
KmX Dissociation constant for Xa-XO complexes 4.1 � 0.18 �M
KiU Dissociation constant for Ua-XO complexes 178 � 88 �M

Model 3 (VfNet, reversible M-M equations)

VfmaxH Maximum forward rate catalyzing Hx ¡ Xa 1.79 � 0.026 �M/s
VbmaxH Maximum backward rate catalyzing Xa ¡ Hx 0.06 � 36 �M/s
KmH Dissociation constant for Hx binding E (forward) 2.47 � 0.39 �M
KpH Dissociation constant for E for binding Xa ¡ Hx 19.1 � 1e4 �M
VfmaxX Maximum forward rate catalyzing Xa ¡ Ua 1.95 � 0.015 �M/s
VbmaxX Maximum backward rate catalyzing Ua ¡ Xa 0.86 � 0.66 �M/s
KmX Dissociation constant for Xa binding E (forward) 4.06 � 0.60 �M
KpX Dissociation constant for E for binding Ua ¡ Xa (reverse) 244 � 80 �M

Model 4 (FullXO, reversible reactions with substrate and product binding to enzyme)

Etot Total concentration of XO 1.0 �M
kfH Forward reaction rate binding Hx to E 100 � 3.9e4 1 ��M�1 � s�1

KdH Dissociation constant for H binding to E � kbH/kfH (forward) 2.77 � 2.4 �M
kpfH Rate of EHx ¡ Xa, forward reaction forming Xa 1.74 � 0.032 1/s
KpH Dissociation constant for E for binding Xa ¡ Hx (reverse) 2,000 � 65,000 �M
kfX Forward reaction rate binding Xa to E 100 � 505 1 ��M�1 � s�1

KdX Dissociation constant for Xa binding to E � kbX/kfX (forward) 4.96 � 0.82 �M
kpfX Rate of Exa ¡ Ua, forward reaction forming Ua 1.93 � 0.023 1/s
KpX Dissociation constant for E for binding Ua ¡ Xa (reverse) 600 � 370 �M

Derived parameters

VfmaxH Maximum forward rate catalyzing Hx ¡ Xa 1.74 � 0.04 �M/s
VbmaxH Maximum backward rate catalyzing Xa ¡ Hx 277 � 739 �M/s
VfmaxX Maximum forward rate catalzying Xa ¡ Ua 1.93 � 0.02 �M/s
VbmaxX Maximum backward rate catalyzing Ua ¡ Xa 496 � 146 �M/s
KmH Effective Michaelis constant for Hx ¡ Xa 2.78 � 1,200 �M
KmX Effective Michaelis constant for Xa ¡ Ua 4.91 � 150 �M
kpbH Reverse reaction rate for Xa � E ¡ EHx 8.7e�4 � 1.6e�7 1 ��M�1 � s�1

kpbX Reverse reaction rate for Ua � E ¡ EXa 0.0032 � 2.5e�5 1 ��M�1 � s�1

Values are means � SD. M-M, Michealis-Menten; Hx, hypoxanthine; Xa, xanthine; XO, xanthine oxidase; Ua, uric acid; E, free unbound XO.
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saturated: in the numerator H/KmH � 1 and the denominator is 1 �
H/KmH � 2, so that the reaction rate is VmaxH/2. (As the reaction
proceeds and Xa is produced, the last term in the denominator comes
into play, demonstrating the diminished availability of the enzyme to
Hx when Xa competes with Hx for occupancy.)

MODEL 2: ESCRIBANO’S MODIFIED M-M EQUATIONS WITH INHIBI-

TION BY UA. Escribano et al.’s equations (10) are used mathematically
exactly but are presented here with only a simplifying algebraic
rearrangement from the original. Compared with model 1’s unidirec-
tional M-M equations (Eqs. 2–4), there is one additional term in each,
namely, the term in the denominator, U/Ki, to account for a hypoth-
esized inhibition of XO by Ua, as follows:

dH ⁄ dt �
�VmaxH � H ⁄ KmH

1 � H ⁄ KmH � X ⁄ KmX � U ⁄ Ki
(5)

dX ⁄ dt �
VmaxH � H ⁄ KmH � VmaxH � X ⁄ KmX

1 � H ⁄ KmH � X ⁄ KmX � U ⁄ Ki
(6)

dU ⁄ dt �
VmaxX � X ⁄ KmX

1 � H ⁄ KmH � X ⁄ KmX � U ⁄ Ki
(7)

where Ki (in �M) is equivalent to a Km value. The mathematics show
that an increase in the denominator reduces the calculated dH/dt; the
chemistry is that binding XO to Ua reduces its availability to Hx and
Xa, a competitive reduction in VmaxH. This model, like model 1,
considers reactions to be irreversible.

MODEL 3: VFNET, REVERSIBLE M-M REACTIONS. In this model,
VfNet, forward and reverse reactions are described with M-M-type
equations. VfNet denotes the net forward flux. We don’t know
whether there is one reaction site within the enzyme or two, but if
there are two, we assume that occupancy of one site precludes
occupancy of the other site, so that accounting for single binding
suffices. Thus, there is no allowance for multiple binding forms, such
as EXX or EHX or EXU. The following equations describe this:

dH ⁄ dt �
�Vf max H � H ⁄ KmH � Vb max X � X ⁄ KpH

1 � H ⁄ KmH � X ⁄ KmX � U ⁄ KmU
(8)

dX ⁄ dt �
Vf max H � H ⁄ KmH � Vb max X � X ⁄ KpH � Vf max X � X ⁄ KmX � Vb max X � U ⁄ KpX

1 � H ⁄ KmH � X ⁄ KmX � U ⁄ KpX
(9)

dU ⁄ dt �
Vf max X � X ⁄ KmX � Vb max X � U ⁄ KpX

1 � H ⁄ KmH � X ⁄ KmX � U ⁄ KpX
(10)

MODEL 4: FULLXO, THE FULLY DEVELOPED DIFFERENTIAL EQUA-

TION MODEL. Accounting for the processes of substrate binding and
release from the enzyme allows consideration of the effect of the rates
of complex formation and dissociation. The model assumes occu-
pancy for only one site at a time. The equations for FullXO describe
the full enzyme model with binding and reversibility. Each equation
accounts for forward and backward reactions and includes the influ-
ence of the concentration of the product and the rate of the reverse
reaction. There is no distinction between EH and EX rebinding in the
first reaction, and it is simply designated as EH; nor is any distinction
made between EX and EU in the second reaction, which is simply EX.
The following equation set accounts for the enzyme conservation in
Eq. 11:

E � Et � EH � EX (11)

dH ⁄ dt � �kfH � E � H � kbH � EH (12)

dEH ⁄ dt � kfH � E � H � kbH � EH � kpfH � EH
� kpbH � E � X (13)

dX ⁄ dt � �kpbH � E � X � kpfH � EH � kfX � E � X
� kbX � EX (14)

dEX ⁄ dt � kfX � E � X � kbX � EX � kpfX � EX
� kpbX � E � U (15)

dU ⁄ dt � kpfX � EX � kpbX � E � U (16)

For this model, the backward rate constants (kb; in s�1) are calculated
from the dissociation constants: kbH � KdH � kfH, i.e., Kd times the
forward rate constant (kf). Likewise, kbX � KdX � kfX, kpbH � kpbH �
kpfH/KpH, and kpbX � kpfX/KpX (where subscript p indicates the
product that is the substrate for the backward reactions to produce Hx
from Xa or to produce Xa from Ua). The equivalents of the unidirec-
tional Michaelis-Menten parameters are as follows: VfmaxH � Et �
kpfH (in �M/s) and KmH � (kpfH � kbH)/kfH (in �M), and, similarly,
VfmaxX � Et � kpfX (in �M/s) and KmX � (kpfX � kbX)/kfX (in �M).
The apparent Km equations for the backward reactions are as follows:

KmbH � (kpfH � kbH)/kpbH and KmbX � (kpfX � kbX)/kpbX. A glossary,
with parameter estimates for all four models, is shown in Table 1.
Table 1, for each parameter, shows 1) the parameter, 2) its definition,
3) a value resulting from the modeling analysis, and 4) units. This
adheres to general principles defined for terminologies (3) and the
expectation for modeling recommended by Clement (8).

General constraints. In all of the models, mass balance can be
checked as a function of time (t). Total solute is the sum of all of the
individual concentrations. Since the total system volume is constant
and the system is closed, so that material cannot be lost, the mass
balance check for models 1–3 is as follows:

H�init� � X�init� � U�init� � H�t� � X�t� � U�t� � 0? (17)

where all of the concentrations are in molar units. For model 4
(FullXO), the check must also include the amount of the sub-
strate bound to the enzyme; here, we calculated U=(t) to check if it
matched U(t):

U'�t� � H�init� � X�init� � U�init� � H�t� � X�t�
� EH�t� � EX�t� � U�t�? (18)

The same end can be accomplished simply by summing the
constituents at each time point to see if they are the same as the sum
of the initial concentrations.

Initial conditions. The initial conditions for all models were U(t �
0) � 0 and zero for all enzyme substrate complexes. For the Hx
progress curves, Hx(t � 0) � 47 �M and Xa(t � 0) � 0 �M. For the
Xa progress curves, Xa(t � 0) � 93 �M and Hx(t � 0) � 0.

Computational and analytic methods. Models were coded in JSim’s
mathematical modeling language and run under JSim using its Java-
based interface system to code models, solve the equations using any
of the eight ordinary differential equation solvers, optimize the fits of
the model to the data under any of the eight optimizers, explore
parameters sensitivity functions, and evaluate goodness of fits and
parameters confidence limits calculated from the covariance matrix.
The models reported here and the whole JSim system are freely
available (open source) at www.physiome.org/Models. The models
are nos. 320, 321, 322, and 323 for models 1, 2, 3, and 4, respectively,
and can all be run by readers on that website or downloaded and run
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on the reader’s computer. For convenience, the four models are also
available in one project file to allow model comparisons to be easily
made (model no. 324). The model is simple to change, as one has only
to revise the model equations and identify any new parameters.

The initial strategy was to fit the model solutions to the Hx ¡
Xa ¡ U data set and then to the Xa ¡ U data set, obtaining the best
two sets of parameter values and their confidence limits. This strategy
led us into a predicament: “which set of parameters would be the
“correct” ones?” and “How would one legitimately average the
parameter estimates when the two experiments had differing data and
differing numbers of data points?” We replaced that strategy with a
stronger one, to obtain the best fit for the two sets of data simultane-
ously using a single parameter set. To do this, the model equations
were duplicated in each of the four models, and the variables in the
second set of equations in each were given slightly different names for
Hx, Xa, and Ua. The “dually constrained” estimates we consider to be
the “best estimate” for that model; the four sets of estimates then
served as the basis for comparing the four models and inferring the
best characterization of the enzyme kinetics under the circumstances
of the particular experiments.

Display of Results

In Figs. 2–4, the symbols represent data (black triangles for Hx,
green squares for Xa, and red triangles for Ua). Continuous lines
represent model solutions. The convention used for labeling the
graphs was as follows: 1) the data points are shown as symbols
without joining lines, with the names ”hyp,“ ”xan,“ and ”uric“ for the
data from Fig. 4 of Escribano et al. and the names ”Xa“ and ”Ua“ for
the data from Fig. 5 of Escribano et al.; 2) the model variables have
different names in the code for the different models and in the left and
right graphs of the same figure, necessitated by having to fit the Hx ¡
Xa ¡ Ua and Xa ¡ Ua data sets simultaneously. The model variables
were graphed use the same exact names as in the model code that is
downloadable for classroom operation.

RESULTS

Fitting of the Models

The model parameters for the best fits are shown in Table 1
for all models, and Figs. 2–4 show graphs of their solutions to
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Fig. 2. Model fits for model 1 and model 2. Each of these models was fitted to the two experimental data sets simultaneously in the optimization procedure. The
goodness of the fit by the two models was indistinguishable visually and negligibly different statistically. Left: data from Escribano et al.’s Fig. 4 (10) are the
symbols hyp, xan, and uric and the model fits are the continuous lines H, X, and U. Right: data from Escribano et al.’s Fig. 5 are given by the symbols Xa and
Ua and the model fits are the continuous lines X5 and U5 for Xa and Ua. The two models can be run and parameters changed ad libitum at
www.physiome.org/Models, where they can be found by searching on model nos. 320 and 321. Model 1 [Michaelis-Menten (MM)] was fitted simultaneously
to both data sets of Escribano et al. (10) by the MM model without product inhibition. The best fitting parameter values were VmaxH � 1.836 � 0.015 �M/s,
KmH � 3.68 � 0.18 �M, VmaxX � 1.96 � 0.11 �M /s, and KmX � 5.95 � 0.267 �M, and the root mean square (RMS) error was 0.536 �M. When the data
in the right graph alone were fitted, the best fitting parameters were VmaxX � 1.97 � 0.015 �M/s and KmX � 6.148 � 0.40 �M, and the RMS error was 0.650
�M. The initial concentration of Hx was set to 46.3 �M instead of Escibano et al.’s stated 47 �M, an adjustment made to fit the final portion of the Ua data,
U(t), assuming conservation of the substrates and products and that none was bound to enzyme. Model 2 (Escribano et al.’s model with product inhibition) was
likewise simultaneously fitted to both data sets of Escribano et al. The MM model with product inhibition gave the following parameter values: VmaxH �
1.755 � 0.027 �M/s, KmH � 2.46 � 0.38 �M, VmaxX � 1.93 � 0.0127 �M/s, KmX � 4.1 � 0.60, and Ki � 178 � 88 �M. The RMS error was 0.534 �M,
evidence that the fit with five parameters was insignificantly better than with four parameters. The parameter covariances were all positive, above 0.66, but the
only one above 0.99 was that between KmH and KmX, 0.994. This suggests that there is constancy of the ratio KmH/KmX. See Table 1 for a glossary of the parameters.
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Fig. 3. Fit of model 3 (VfNet) to the two
data sets simultaneously. The parameters were
VfmaxH � 1.79 � 0.027 �M/s, VbmaxH �
0.0605 � 35.7 �M/s, KmH � 2.47 � 0.39
�M, KpH � 19.1 � 1.1e4, VfmaxX � 1.95 �
0.015 �M/s, VbmaxX � 0.865 � 0.66 �M/s,
KmX � 4.06 � 0.60 �M, and KpX � 244 � 80
�M. (See model no. 322 at www.physiome.org.)

A Personal View

42 XANTHINE OXIDASE ENZYME KINETICS

Advances in Physiology Education • doi:10.1152/advan.00107.2012 • http://advan.physiology.org

 at U
niversity of W

ashington on M
ay 15, 2013

http://advan.physiology.org/
D

ow
nloaded from

 

http://www.physiome.org/Models
http://www.physiome.org
http://advan.physiology.org/


fit the data points. In Figs. 2–4, the data from Escribano et al.’s
Fig. 4 (Hx ¡ Xa ¡ U) are shown in the left graphs and the
data for Escribano et al.’s Fig. 5 (Xa ¡ U) are shown in the
right graphs, as referred to in the tables.

Each of the four models was fitted to the data using the
optimizer SENSOP (6) in JSim for automated optimization to
minimize the root mean square error (RMS), a global minimi-
zation of the RMS error, using equal weights on the points as
well as equal weights on the individual curves for the left
graphs (Hx ¡ Xa ¡ U) and right graphs (Xa ¡ U) of Figs.
2–5 simultaneously, producing five curves comprising 146 data
points. (The RMS is the square root of the sums of squares of
the differences between the data and the model solutions, a
kind of SD divided by the number of points.) Because there
were three data sets in the Hx ¡ Xa ¡ U experiment and only
two data sets in the Xa ¡ U experiment, the analysis had a bias
toward the former rather than the latter. A calculation of the
covariance matrix provided confidence ranges for each of the
free parameters; estimates � SD are shown in Table 1.

Model 1: unidirectional M-M without inhibition. This first
model, being simpler than the Escribano et al. model, and in
fact was the one rejected by Escribano et al., was expected to
be a poorer fit, but in fact was rather good (Fig. 2). The
confidence limits for the first reaction were clearly narrower
than for the second reaction when only the Hx ¡ Xa ¡ Ua
data were used. Use of the second data set, for the Xa ¡ U
reaction, narrowed the confidence limits for both VmaxX and
KmX. Escribano et al. may have been stimulated by the misfit-
ting of the curves in the left graph of Fig. 2, the tail of the Xa(t)
and the late part of U(t) and devised their model, our model 2,
to include inhibition by Ua to improve the fit. The code is
available at www.physiome.org/Models/ (no. 320 for model 1
and 321 for model 2), where it can be run online or the source
code downloaded and run using JSim on one’s own computer.

Model 2: unidirectional M-M with inhibition by Ua (Es-
cribano et al. model). Inhibition of both forward reactions by
the final product was represented by the term U/Ki in the
denominator of Eqs. 5–7. The physical meaning is that Ua has

a significant affinity for the binding site, Ki � 178 �M, and, by
remaining attached, renders a fraction of the enzyme unavail-
able for the reactions. As the reaction proceeds and the con-
centration of U(t) rises, this fraction increases, slowing the
transformations. This raises the question of the influence of this
binding on the apparent parameters for the system. The fits of
model 2 to the data are also shown in Fig. 2; the solutions for
models 1 and 2 are superimposed, showing no differences at
the level of resolution of the graphics. Details are provided in
Fig. 2, and the parameter estimates are shown in Table 1 for
models 1 and 2.

By fitting the two data sets simultaneously, the parameter
confidence ranges were substantially reduced and the estimates
of Km and Vmax by models 1 and 2 were found to be statistically
different. The parameter covariances between KmH and KmX
were high in both models, over 0.99, and their ratios were both
close to 0.6, suggesting that there was a constant ratio, KmH/
KmX; this reinforces the idea that both Hx and Xa bind to the
same site on the enzyme. How to interpret the differences
among the parameters more generally then depends on whether
or not one believes that Ua binds strongly enough to the
enzyme to validate model 2 or at least to consider it preferable
to model 1, the M-M model without product inhibition. Our
estimated parameter values were close to but not identical to
those of Escribano et al., possibly due to our errors in digitizing
the data from their published figures. The later analyses with
model 4 should help answer this by providing estimates of the
binding affinities while also accounting for the actual mass of
the enzyme and the substrate-enzyme complexes, something
not considered by the M-M-type models.

Model 3: reversible M-M without product inhibition (VfNet).
The fits of the reversible M-M model solutions to the data sets
might be expected to be slightly better than for the simpler
models simply because of the greater number of parameters.

The analysis using model 3 (VfNet) showed that the rates of
the forward reactions, oxidation, by far exceed the rates of the
backward reactions, reduction, as expected in an O2-rich mi-
lieu. The experiments were done in the absence of NADH,
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Fig. 4. Fit of model 4, the FullXO model, to the two Escribano et al. data sets. The parameters are shown in Table 1. The RMS error was 0.797, greater than
for the simpler models, not less, despite the greater number of parameters. H(t) in the first seconds was pulled down by the rapid binding to the enzyme. The
continuous black curve for �dH(t)/dt in the left graph (�Hx:t in the graph) shows the rapid binding and then a decreasing slope as the reaction slowed over the
next 60 s. In the right graph, the flux dX/dt of Xa to U (continuous green line) showed a similar initial high rate but was then followed by a long relatively constant
rate before the final decline after 40 s. This constancy shows that the affinity of Xa to the enzyme was much greater than that for U: KdX � KpX. (KpX for the
rebinding of Ua to E corresponds to Ki of model 2, with the subscript p indicating the product of the reaction, Ua, while X is the substrate.) (See model no. 323
at www.physiome.org.)
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without which reduction, the backward reaction, is virtually
impossible for these compounds. Moreover, the affinities for
binding for the backward reaction were low, with KpH and KpX
both being quite high (� low affinity) compared with KmH and
KmX. The forward affinities were much lower (tighter binding)
than the backward affinities, really favoring the idea that model
1 (M-M reactions without any backward reaction) might be an
adequate kinetic characterization.

The apparent Km values were lower than those for model 1,
suggesting that this more complete model 3, accounting for
backward reactions, revealed binding site affinities to be higher
than estimated by the irreversible M-M model. This was
certain to happen, as any tendency toward a backward reaction
has to be offset by either a higher on-rate or a tighter binding
of the substrate to the enzyme. Since none of the first three
models have a parameter for the rate of binding, the higher
substrate binding affinity (lower Km) has to account for the
observed kinetics. Given that all reactions were reversible, it is
sensible to consider this lower Km to be more reasonable.

The ostensible virtue of the VfNet reversible M-M model,
model 3, is that it should give a better representation of the
thermodynamics of the reaction by predicting the equilibrium
concentrations where the forward and backward reactions are
at the same rate, in balance with zero net flux. Thermodynam-
ically, the ratio of the concentrations of the substrate and
product at equilibrium is the same whether or not a catalyst is
present. The ratio for the Hx to Xa reaction, VfmaxH/VbmaxH �
1.79/0.0605 � 29.6, is suitable for a strongly forward reaction,
but the ratio for the Xa to Ua reaction, VfmaxX/VbmaxX �
1.95/0.865 � 2.25, is rather lower than expected given that the
reaction was seen to go close to completion. However, the
ratios of the Km values, the substrate binding and forward
reaction to product binding and backward reaction, may be
more indicative, as these are Kph/Kmh � 70,000 and Kpx/Kmx �
60 (values in Table 1 and Fig. 3). All of the first three models
provide a hint that there may be some backward reaction: the
evidence is that the late part of the Ua curve is higher than the
model curve shown in Fig. 4; the initial Hx concentration was,
as stated by Escribano et al., 47 �M, but an adjustment to 46.4
�M gave a better fit to the last part of the curve of Ua(t).

Model 4: model for kinetics of binding and catalysis for
Hx ¡ Xa ¡ U (FullXO). This model should give the best and
most meaningful representation of the data; it provides an
explicit description of the reaction sequence, the binding, the
forward reaction, the rebinding of the product to the active site,
and the backward reaction from the product to form the
original substrate and accounts for an important additional
datum, the enzyme concentration, [XO] � 1 �M, which
provides another constraint. Even so, the model is relatively
unconstrained: there are now more parameters than can be
identified clearly by fitting these data. What would be most
valuable is knowledge of the equilibrium for the conditions of
the experiment. Given the equilibrium ratios of [Hx]/[Xa] and
[Xa]/[U], or the triple ratio [Hx]/[Xa]/[U], the parameters
could be constrained. Unfortunately, these numbers are diffi-
cult to obtain experimentally and are heavily dependent on the
physical-chemical conditions, so we do not have such numbers.
The result is that the confidence ranges indicated by the �1
SDs are large. The model fits are shown in Fig. 4. As with
models 1–3, the parameters show the best fit to the two data
sets, a compromise that gives RMS errors larger that fitting the

curves individually but strengthens the confidence in the esti-
mates.

The fit to Hx(t) was systematically poor during the first 15 s:
this is due to the rapid decrease in the model’s H as it binds to
the enzyme. This was to be expected when the enzyme con-
centration is 2% of the initial substrate concentration (1.0
�M/47 �M). This fit used fast on- and off-rates for both the Hx
and Xa reactions; the fast rates (100/s used here for kfH and kfX)
approximated the assumption made for M-M kinetics, but
model 4 was actually strikingly different from M-M models
1–3, and, since it provides explicit forms for each stage of the
reaction sequence, it invites comparisons with those models.

To provide an equivalence to Km and Vmax values of the
M-M-type models, they can be derived from the parameters
shown in Table 1 for model 4, as follows:

kbH � �KdH � kfH� � 2.77 � 100 � 277 s�1

�off rate for H from E�
KmH � �kpfH � kbH� ⁄ kfH � �1.74 � 277� ⁄ 100 � 2.79 �M

�apparent Km forward Hx reaction�
VfmaxH � �Etot � kpfH� � 1.0 � 1.74 � 1.74 �M/s

�theoretical Vmax�
kbX � �KdX � kfX� � 4.96 � 100 � 496 s�1

�off rate for X from E�
KmX � �kpfX � kbX� ⁄ kfX � �1.94 � 496� ⁄ 100 � 4.98 �M

�apparent Km forward X reaction�
VfmaxX � Etot � kpfX � 1.0 � 1.93 � 1.93 �M/s

�theoretical Vmax�
The Vmax calculated in this traditional way is the ostensible

maximal forward velocity of the reaction, based on the pre-
sumption that the binding of the substrate to the enzyme is
instantaneous, so we set the on-rates, kfH and kfX, to high
values for the computation shown in Fig. 4. The binding was in
series with the reaction process and, therefore, can only slow it.
The calculated VfmaxH was theoretically 1.74 �M/s; in the
Hx ¡ Xa ¡ Ua experiment, the forward flux was 1.56 �M/s
in the moments after the rapid binding phase (the black curve
of labeled �H:t for dH/dt in Fig. 4, left) but then diminished
over the next minute. The Xa ¡ Ua reaction gave a better test
of the theoretical prediction of Vmax since there was only one
prime substrate, Xa, and the initial concentration was higher.
VfmaxX was 1.93 �M/s, and the observed peak rate of conver-
sion was 1.82 �M/s in the first moments, only 5% less than the
theoretical maximum value; this rate diminished only gradu-
ally, as shown in Fig. 4.

Evaluation of the results was aided by calculating the cova-
riances among the parameters. The covariance matrix calcula-
tion represents a local linear approximation to the shape of the
overall goodness of fit in parameter space. The values for �1
SD shown in Table 1 were estimated from the covariance
matrix when all of the parameters were free to vary. For this
model, the forward binding rates for Hx and Xa, kfH and kfX,
were uncertain, meaning that large changes in values made
little difference to the model fitting. For an additional test, we
set both kfH and kfX to 100/s and recalculated the covariance
matrix with the six remaining parameters free. The result of
this reduction in degrees of freedom by 25% was a substantial
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reduction in the estimated SDs, as shown in Table 2. This
reduction in free parameters also resulted in a change in the
covariance matrix reducing the overall levels of correlation
(Table 3). Of these, the highest was that between the apparent
dissociation constants, KdH and KdX, something that might be
expected. Since the molecular forms of Hx and Xa are so
similar, this can be considered as evidence that the same
binding site is being used for both transformations, Hx to Xa,
and then to Ua.

Comparisons of the Parameters of the Four Models

The four models fitted to the same data must give similar
results for the fluxes or else the data would not be fitted. This
is shown in Table 4: the Vmax values are closely matched; the
question of whether or not the Km values match is a more
serious issue, for these are what is tabulated in databanks. Vmax
is a measure of the amount of enzyme and its activity coeffi-
cient in each experiment, and thus will vary widely, but Km or
Kd is closer to a thermodynamic parameter, dependent on ionic
composition, pH, temperature, and the local chemical environ-
ment. One would prefer that the estimates of Km are not
dependent on the model used to estimate the value, and the
results were satisfactory from this point of view. The estimates
from model 1 were the farthest out of line with the other more
complete models, as might be expected. The similarity between

estimates from models 2 and 3 is simply due to the fact that the
reverse reactions in model 3 were inconsequential, putting all
the emphasis on the parameters of the forward reaction. The
seeming best model, model 4 (FullXO), gave greater variance
in the estimates of the Km values, an inevitability given the
larger number of unconstrained parameters, although the Vmax
values still had narrow confidence limits.

The model 2 estimates of KmH and KmX were both higher
than those reported by Escribano et al. (10), 1.86 and 3.38 �M,
and also higher than the estimates of KmX of 3.4 and 3.6 �M
reported by Houston et al. (13) for cell-surface bound and
soluble bovine cream XO, but the differences for KmX were not
statistically significant.

DISCUSSION

Which Is the Right Model?

The classic M-M model form, model 1, provided a good fit
not only to the two individual data sets but, more importantly,
to the two data sets together. This much alone ”validates“ the
model as a description of the data. But the success says also
that there is no necessary reversibility in the successive reac-
tions or at least it is not detectable in these experiments.
Escribano et al. incorporated inhibition by Ua on the basis of
their observations on initial velocity experiments on Xa. They
found that in the presence of varied steady-state concentrations
of Ua, the half-maximal inhibitory effect was obtained with
178 �M Ua and thus used that as Ki in Eqs. 5–7. That being the
case, the question is how to explain that models 1 and 2,
without and with Ua inhibition, fit the data equally well. It
can’t be explained by different rates of the reactions, since
fitting the data demanded specific consumption rates to match
the slopes dH/dt, dX/dt, and dU/dt. The answer appears to be
that adjusting KmH and KmX in model 1 compensates very
nicely for the neglect of the Ua inhibition. This compensation
is not exact: the sensitivities to these parameters were not the
same as for Ki, as shown in Fig. 5.

Figure 5, right, shows the sensitivities for Ki and KmX for the
same parameters as used in Fig. 2. The sensitivities were defined
in the JSim sensitivity analysis calculation as for example U5:Ki
and X5:KmX (where the 5 is simply to distinguish these from the
simultaneously calculated U and X in Fig. 5, left) but were
mathematically the partial differentials of the solution with respect
to a change in the parameter value, as follows:

SKi
U �t� �

�U�t�
�Ki

or SKmX
X �t� �

�X�t�
�KmX

(19)

where S(t) is the change in magnitude of the particular func-
tion, U(t) or X(t), e.g., for a fractional change in a particular

Table 2. Parameter estimates for model 4 with reduced
degrees of freedoms

Parameter Value SD �90% �95% �99%

KdH, �M 2.80 0.287 0.48 0.57 0.75
kpfH, 1/s 1.80 0.020 0.034 0.040 0.053
KpH, �M 2,003 5,446 9,030 10,790 14,260
KdX, �M 4.66 0.44 0.73 0.87 1.15
kpfX, 1/s 1.94 0.120 0.02 0.024 0.032
KpX, �M 563 209 347 415 549

Table 3. Correlation matrix or normalized covariance
matrix for the parameters shown in Table 2 (condition no. �
3.0e12)

KdH kpfH KpH KdX kpfX KpX

KdH, �M 1 0.91 0.42 0.98 0.85 0.80
kpfH, 1/s 0.91 1 0.29 0.90 0.79 0.75
KpH, �M 0.42 0.29 1 0.37 0.10 0.01
KdX, �M 0.98 0.90 0.37 1 0.89 0.82
kpfX, 1/s 0.85 0.79 0.10 0.89 1 0.69
KpX, �M 0.80 0.75 0.01 0.82 0.69 1

Table 4. Comparison of Km and Vmax values of the four models

Parameter Definition
Model 1

(MM2_irrevers)
Model 2

(MMinhib)
Model 3
(VfNet)

Model 4
(FullXO)

KmH, �M Michaelis constant for Hx-Xo complexes 3.68 � 0.18 2.46 � 0.12 2.47 � 0.39 2.79 � 0.43
KmX, �M Michaelis constant for Xa-XO complexes 5.95 � 0.27 4.1 � 0.78 4.06 � 0.60 4.68 � 0.42
VmaxH, �M/s Maximum rate that the enzyme catalyzes Hx ¡ Xa 1.84 � 0.015 1.76 � 0.01 1.79 � 0.03 1.74 � 0.04
VmaxX, �M/s Maximum rate that the enzyme catalyzes Xa ¡ Ua 1.96 � 0.11 1.95 � 4 1.95 � 0.015 1.93 � 0.015
Ki, �M Dissocation constant for Ua inhibition 178 (fixed) 244 � 80 600 � 370

Values are means � SD.
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parameter value. These S(t) values show the sensitivity to a 1%
change in the parameter. Figure 5, right, shows that the 1 �M
increase in KmX at the time of the maximum rate of decrease of
X(t) or at the inflection point in the rising curve of U(t) would
give a 2-�M peak increase in X(t) or a 2-�M peak decrease in
U(t). The effects on X(t) and U(t) were exactly opposite, so the
negative of the sensitivity for U(t) to KmX (SKmX

U ) plots exactly
on top of the positive sensitivity of X(t) (SKmX

X ); this was, of
course, expected since the only solute species present are Xa
and Ua, so what isn’t Ua is Xa. Likewise, for the same reason,
�SKi

X (t) was plotted, exactly coinciding with �SKi
X (t). The

sensitivities to Ki were very low and were multiplied by 200 for
plotting. (In this model, there was no possibility of forming Hx
from Xa.) The sensitivities to KmX were slightly earlier in time
since KmH affected the reaction rate from the beginning,
whereas Ki did not have an influence until the concentration of
Ua was significant. The similarity in the shapes of SKmX

U and
SKi

U (t) indicate that adjusting KmX will contribute the most to
compensating for the absence of influence of Ki in the Xa ¡
Ua experiment. Note that the sensitivities to Ki were small and
that their sensitivity functions were multiplied by 200 in Fig. 5
to show the shapes (dashed lines in the left graph and the
superimposed dashed-dotted and dotted lines of the higher
peaked curve in the right graph).

Figure 5, left, shows that for the Hx ¡ Xa ¡ Ua experi-
ment, it is the combination of KmH and KmX that is required to
obtain the good fits shown in Fig. 2. The shapes of the
sensitivity functions SKi

U (t), SKmX
U (t), and SKmH

U (t) were quite
different: the negative component of the latter was almost the
inverse of SKi

U (t), which helped in obtaining the fit of model 1
to the data of U(t). The overall result was that the higher values
for KmH and KmX using model 1 than for Model 2 almost
exactly compensated for the absence of Ki. We think that
Escribano et al. strategized well in accounting for the inhibition
by Ua, but they really should have included the data showing
that inhibition of conversion of Xa rather than merely taking
the value for the apparent Ki and using it. Their failure to report
those data means that their results cannot be considered repro-
ducible unless one takes their estimate of Ki � 178 �M on
faith.

The sensitivity functions for models 3 and 4 can be explored
similarly to demonstrate their relative strength of influence on
the shapes of the model functions. The analyst gets a good
quantitative feeling for the sensitivities to different parameters

simply by optimizing the fit of the model to the data by manual
parameter adjustment, which is tedious but informative. It is
worth remembering that there is no perfect optimizer; all that
counts is getting a fit that accounts well for the data and the
relative accuracies of the data points. The covariance matrix
calculations are a formal way of estimating confidence limits,
but are based on only the linear approximations to the slopes of
relative error per unit change in parameter value at the final
point in parameter space. They tend to underestimate the true
SDs, especially when the number of degrees of freedom has
been reduced by fixing certain parameters, as we did in fixing
kfH and kfX at 100/s.

The choice of the ”best“ model depends on one’s criteria.
Model 1, the sequential M-M model, provides the most parsi-
monious description: a good fit with only four parameters.
Model 2, Escribano et al.’s model, gave as good a fit as model
1 and used only one more parameter to account for the
unpublished data on ”inhibition� by the final product, Ua.
Neither of these accounted for any reversibility. Model 3,
VfNet, accounted for reversibility, but not highly persuasively:
it did not give a much better fit, nor did it give parameter
estimates that were more clearly or narrowly defined. The
M-M model conditions were violated for the backward reac-
tions since the rates of the backward reaction were low; the
binding constant for the reverse reaction Xa ¡ Hx was of such
low affinity that the Hx ¡ Xa reaction was almost irreversible.
On the other hand, the reversibility of the Xa ↔ Ua reaction,
with a KpX value of 244 �M, was clearly evident and provided
an alternative explanation for the Ki of model 2. Model 4,
FullXO, allowed for all of the backward and forward events,
which is thermodynamically proper. While having no direct
expression for product inhibition equivalent to Ki, the binding
of Ua to the enzyme was accounted for through KpX, the
dissociation constant; only a little inhibition was provided
through the binding, with KpX being so high. This is an
alternative interpretation to model 2, the Escribano et al.
model, with a low Ki. Model 4 fitted the data as well as the
more primitive models and required no inhibition to fit the
data. Like the sensitivities to Ki in model 2, those to KpX in
model 4 were low.

In this reevaluation of the kinetics of a particular experiment on
XO, we have not challenged the current views that most reactions
can be represented by first-order linear processes with constant
average rate constants. In actuality, of course, these models are all
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iFig. 5. Sensitivities to KmH, Ki, and KmX for

Hx, Xa, and Ua for model 2 (Escribano et
al.’s MM model with inhibition by Ua bind-
ing to the enzyme). Model parameters are
shown in Table 1. The sensitivity H:Kmx, for
example, is the sensitivity of Hx(t) to KmX.
Left: S(t) for Hx ¡ Xa ¡ Ua. Right: S(t) for
Xa ¡ Ua at the same scale. Because Xa ¡
Ua, the sensitivity to Ki for Xa (here called
X5 in the model) was exactly the negative of
that for Ua (U5 in the model code), so the
two curves are superimposed. Likewise, the
sensitivities for Xa and Ua to KmX were
the negatives of one another. (See model no.
321 at www.physiome.org.)
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wrong. This is true of all models, in the sense that they are
incomplete and inexact. For example, can models 1–3 be regarded
as inexact because instantaneous binding was assumed? Should
models 1 and 2 be considered invalid since they do no allow
reversibility? Model 4 accounts for the kinetics of binding and
unbinding at the reaction site, but is it therefore exact? The
underlying basic assumption here and in the more primitive mod-
els 1–3 is that the forward reaction is a Poisson process wherein
reaction events occur randomly at intervals described by a single
exponential distribution: the rate constant is the reciprocal of the
average time interval between reaction events. This is probably
accurate for small molecules at low concentrations, but enzymes,
being large proteins of variable form, have multiple conforma-
tional states, and these states or configurations have varied degrees
of preparedness to facilitate a reaction. In a study by English et al.
(9), they showed that with 	-galactosidase the times between
reaction events are correlated: short interevent intervals tend to be
followed by similarly short intervals and long intervals by long
intervals. This is to be expected when a protein has to go through
a series of different states to reach any particular state; shifting the
molecular shape through sequential forms takes time and thus
explains the autocorrelation in the interval lengths. Some of the
states are more conducive to a reaction than others, where sub-
strate access to the active site may be partially obstructed. The
autocorrelation functions can be fitted well by stretched exponen-
tial or power law distributions, illustrating fractal kinetics, as has
been also been observed with oxygen binding to hemoglobin (14)
and put into broad context by Bassingthwaighte et al. (4). Taking
this into account implies using rate constants depending on the
conformational state. Another difficulty is that the level of con-
centration has an impact on the reaction rates, and not just because
of partial saturation of the binding site: when there are only a few
enzymes within a cell or a vesicle, then diffusion events, binding
events, and reaction events occur with finite probabilities. Sto-
chastic computation methods should then be considered in com-
puting the kinetics. Luckily, when many molecules are present,
the calculations of English et al. (9) assure us that our simpler
model 4 should be accurate, given that the model is correct.
Nevertheless, although we have discussed serious limitations in
the various M-M-type reactions, they commonly serve as excel-
lent descriptors.

Conclusions With Respect to the Science

A series of increasing refined sets of equations for the
reactions of purine nucleoside metabolites, Hx, Xa, and Ua,
facilitated by binding to XO, can all provide good fits of the
model solutions to the data on progress curves in in vitro
experiments. The four models, from the simplest M-M form to
the more detailed differential equation model, gave similar
estimates of the apparent Km values, showing that they are
about twice as large for the second reaction, Xa to Ua, as for
the first reaction, Hx to Xa. From the point of view of obtaining
gross estimates under a wide variety of conditions, this says
that the simplest method, the unidirectional M-M form, over-
estimates the Km values only modestly.

Comments With Respect to Learning Systems Physiology

The American Association for the Advancement of Science (1)
has put forward an extensive set of recommendations with respect
to the teaching and learning of biology in this modern era, em-

phasizing the importance of looking at biology as a quantitative
science based on physics and chemistry, and held together with
mathematics. The creation of a model is an attempt to formulate
a coherent self-consistent, precisely defined explanation for the
phenomena explored in an experiment or a set of experiments.
While here we use a simple test tube, in vitro experiment to
illustrate the steps in a progressive analysis, modem computa-
tional methods can now be used to put together models of great
complexity. Cardiac electrophysiology models, for example, in-
tegrate data and ideas from thousands of experimental studies;
such models are vehicles for learning by observing the effects of
individual parameters or combinations of parameters. Predictions
from models help to define the critical experiments that lead to
disproof of the model that is the current working hypothesis and
to a better model. The combined processes of model development,
testing for validity, dissemination of the model, and further ex-
perimentation is the iterative process we call scientific advance-
ment.

The Association of American Medical Colleges (AAMC)
argues persuasively that physicians, too often trained to avoid
mathematics, need to use the power of quantitative analysis in
serving their patients in diagnosis and in treatment. For exam-
ple, Silva and Rudy characterized the molecular dynamics of
the KCQN1 K� channel and demonstrated in whole heart
models the spread of excitation and the causation of arrhyth-
mia. This story was the latest chapter in a comprehensive series
covering a decade of focused research on a disease caused by
a mutation in a single molecule. Cystic fibrosis is a parallel
example. Some, but not most, of the variant mutations in these
two diseases appear to be amenable to treatment with highly
specific drugs.

The integrative mathematics that went into the KCQN1
effort won’t be the domain of the practicing physician, but the
logic of how cell and molecular derangements affect the health
of a patient and provide guides toward therapy is essential to
becoming a competent physician. The AAMC outlines 10
overarching principles, the first 2 principles of which are as
follows:

1. The practice of medicine requires grounding in scientific
principles and knowledge, as well as understanding of how
current medical knowledge is scientifically justified, and how
that knowledge evolves.

2. The principles that underlie biological complexity, genetic
diversity, interactions of systems within the body, human
development, and influence of the environment guide our
understanding of human health, and the diagnosis and treatment
of human disease.

Our treatment of one of the facets of operation of an abundant
enzyme shows some of the logical steps in developing an
understanding of enzymes but also reveals that more questions
need to be answered. This is the “ignorance explosion,” the
disturbing and distorted echo from the knowledge explosion.

APPENDIX: LIST OF ASSUMPTIONS

1. Activity coefficients for substrates and enzymes and enzyme-
substrate complexes are all unity.

2. Enzyme concentration (Etot) is negligible compared with sub-
strate concentrations (models 1–3 only.)

3. Rates of substrate binding and unbinding from the enzyme were
rapid compared with the rate of conversion of the substrate to the
product (models 1–3 only). For model 4, the results shown in Table 1
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do not make this assumption, and, therefore, an estimate of the rates
through optimization was obtained. Assuming on-rates of 100/s, this
assumption was then made, and the results are shown in Table 2.

4. We don’t know whether there is one reaction site within the
enzyme or two, but if there are two, we assume that the occupancy of
one site precludes occupancy of the other, so that accounting for
single binding suffices. Thus, there is no allowance for multiple
binding forms, such as EXX or EHX or EXU (all models).

5. Binding kinetics and reaction rates are first-order, constant-rate
processes independent of any changes in conformational states of the
enzyme or concentrations of substrates (all models).

6. The initial concentration of Hx was set to 46.3 �M instead of
Escibano et al.’s stated 47 �M, an adjustment made to fit the final portion
of the Ua data, U(t), assuming conservation of the substrates and products
and that none was bound to the enzyme (models 1–3 only; for model 4,
the initial condition was 47 �M).
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