\\‘ Stony Brook
University

A Predictive Multiscale Model for

Simulating Platelets Activation In Shear Flows

Integrated MISM on HPC

m National Heart, Lung, 2015 IMAG

and Blood Institute - nayItiscale Modeling
National Institute of (MSM) Cor!sortlum
Biomedical Imaging Meeting
and Bioengineering

Project Summary

INTRODUCTION: The coagulation cascade of blood may be initiated by flow-
induced platelet activation, which prompts clot formation in prosthetic
. Upon activation,
platelets undergo complex morphological changes of filopodial formation
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that play a major role in aggregation and attachment to surfaces.
Continuum methods fail to capture the molecular-scale mechanism such as
filopodial formation. Utilizing molecular dynamics (MD) to model this is
computationally prohibitive. We developed a multiscale model which
interface nanoscale microstructures of human platelets and microscale
transport of blood flows, for providing a more accurate flow-induced
dynamic stress mapping on platelets and predict their activation [1-5].
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MULTISCALE MODEL: Two spatiotemporal scale methods:
(1) Top/microscale using dissipative particle dynamics (DPD) to describe

viscous blood fluid flows (viscosity, compressibility);

(2) Bottom/nanoscale using coarse-grained molecular dynamics (CGMD) to
describe the platelet membrane, cytoplasm and the cytoskeleton.
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Modified Velocity Verlot Integration
i for the DPD-modeled plasma
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Progress and Milestones

» Platelet Flipping: Fluid-platelet dynamic interaction allows the
platelets to continuously change their morphology while reflecting

the microstructural changes of the platelets in response to these
extracellular stresses that are transferred to them.
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» Platelet Activation: The hemodynamic stresses are computed and
accumulated on actin filaments. Filopodial formation is stimulated
for filaments which are exposed to highest stresses. The filopodia
formation compared favorably with in vitro measurements.

Platelet surface stress
mapping

Platelet deformation
under shear flow

Y

TR

Ny, N
-
L]

Platelet
cytoskeleton
stress mapping

[ ]
A A |
2
9, s 2 /\
29067 W00 0000 5 WY, % qgt00% & Seee® |
]

1‘ | :6” 1‘1‘ | }1‘6} | }2‘1‘ : :2}6‘ | :3‘1‘ | 3‘6‘ | }4‘1‘ |
Filament IDs
Compare stress accumulation for 44
actin filaments to seek the filaments

with relatively high stresses

Microtubule

“~
ey
[
~
‘N.
A

bt -
g —————-__

Shear induced platelet
activation

Stress Distributions

Biomedical
Multiscale Model
(MSM)

Top Supercomputers

High Performance
Computing (HPC)

» Mechanotransduction Process: The hemodynamic stresses that
may lead to activation and filopodial formation mapped on the
deforming membrane and dynamically transferred to the platelet
cytoskeleton while platelets flowing and flipping.
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» High Performance Computing (HPC) and Efficient Algorithms for
Multiscale Modeling: We perform the multiscale simulations on
top supercomputers including the Tianhe-2, Sunway (China), and
the Stampede, CS-Storm, Comet (US). For the system of 10.89-
million particles and 16 platelets, the simulation time is reduced
from 3 years to 37 days, using 512 cores and 16 GPUs.
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CONCLUSIONS: : Our multiscale numerical approach offers a computationally affordable and highly
resolved method for modeling platelet activation in shear flows. Biophysical properties of deformable
platelets are accurately described down to the nanoscales. Hemodynamic stress is mapped on
membrane and intra-platelet components. The filopodia formation is mimicked and correlate with in
vitro microchannel experiments. This model can be further employed to simulate other processes
olatelet activation, aggregation and adhesion, offering a practical multiscale method for
solving complex clinical problems at the juncture of biology and engineering.
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