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Office of Science

Department of Energy Announces $1
Million in Collaborative Funding for

Privacy-Preserving Artificial Intelligence

Office of Science »

Department of Energy Announces $1 Million in Collaborative Funding for Privacy-Preserving Artificial Intelligence Research

DOE National Laboratory researchers will partner with flagship dataset developers from the National Institutes
of Health Bridge2Al community

WASHINGTON, D.C. - Today, the U.S. Department of Energy (DOE) announced $1 million for
collaborations in privacy-preserving artificial intelligence research. The aim of this funding is to
bring together researchers from the DOE National Laboratories and the National Institutes of
Health (NIH) to jointly develop new flagship datasets and privacy-preserving methods and
algorithms to improve healthcare. This funding is in response to congressional direction for the
DOE to expand its successful collaborative research efforts with NIH in the data and computational

mission space.
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https://www.energy.gov/science/articles/department-energy-announces-1-million-collaborative-funding-privacy-preserving
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MOTIVATION FOR PALISADE-X

THE LANCET
Digital Health

DATASET SHIFT IN
MACHINE LEARNING

ARTICLES | VOLUME 4, ISSUE 6, E406-E414, JUNE 01, 2022

Al recognition of patient race in medical imaging: a

EDITED BY JOAQUIN QUINONERO-CANDELA, MASASHI SUGIYAMA, mOdelllng StUdy
ANTON SCHWAIGHOFER, AND NEIL D. LAWRENCE u

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

‘A

The Clinician and Dataset Shift in Artificial Intelligence
Source: PMID: 34260843 DOI: 10.1056/NEJMc2104626
Kelly Malcom  June 21, 2021 11:41 AM

Popular sepsis prediction tool less
accurate than claimed

The algorithm is currently implemented at hundreds of U.S.
hospitals.

Source: https://labblog.uofmhealth.org/lab-report/popular-sepsis-prediction-tool-less:

accurate-than-claimed
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KEY CAPABILITIES OF PALISADE-X

To Build Models that are Fair and Trustworthy using PPFL

= End-to-End strong IAM
— Enable setting up Secure Federation across organizational boundaries

= Easy to leverage HPC for training
— Integrate heterogenous computing resources

= Secure Enclaves for compliant data storage and facilitate secure federation
— Software to create virtual private enclaves on supercomputers

= Framework to evaluate privacy protection possible for different data modalities
— Different levels of privacy budgets to conform with different compliance — FISMA
High, Medium, Low
— Frameworks and approaches to measure privacy protection by attacking models

= APIs and Plug-and-Play architecture
— To integrate into existing services and add new capabilities/algorithms

6 Argonne &




CHALLENGES UNIQUE TO Al IN BIOMEDICINE

As they relate to building better Al models

= Alis a data hungry sport

= |n Biomedicine, Data is
— Often private and sensitive
— Comes in different modalities
— With different distributions

= |n Biomedicine, you will hear about
— FISMA High, Moderate
— Covered Entities
— HIPAA
— DUAs
— IRBs

= The non-technical/policy challenges of general data availability leads to models that are under
specifed and overfitted
() ENERGY 03 ks 7 Argonne &
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KEY CAPABILITIES — SECURE ENCLAVES

Computing, Policies

Argonne biomedical learning enclave (ABLE)
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KEY CAPABILITIES HPCRYPT
Software to securely leverage supercomputers for Al and HPC

Standalone Secure :

= HPCrypt enables securely Enclave R R R B
leverage HPC resources Se0SEcEaOEOEEEES

. S0000es ]

» HPCrypt creates virtual T T 11171 "1
enclaves that provide Secure Enclave + SEEEE8S : :
additional security within HPCrypt 1
HPC systems s

J

.

» Integrated HPCrypt
capabilities with ABLE
Virtual enclave extends into HPC system
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ARGONNE PRIVACY PRESERVING
FEDERATED LEARNING
FRAMEWORK

Y Google Cloud

https://www.palisadex.net/appfl
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IDENTITY AND ACCESS MANAGEMENT FOR EASY AND
SECURE FEDERATION

____________________________
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END-TO-END PPFL IN PRACTICE

Authentication Layer

Execution Layer APPFLtIient
Fed-learning APPFL ( Client’s Workers \
algorithm C.ontrol EEEEE
signals | fun? « SI |T|
Communication Layer Sl e werkiosg menaser

, O
Model’s parameters transfer o\\Q'

-.I.Il - https://appfl.readthedocs.io/en/stable/
“z:"amazon E AWS S3 Bucket https.//www globus.org/

L] services https://aws.amazon.com/s3/
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ADDITIONAL ONGOING WORK

= Systematic evaluation of different attack modalities
— Joint work with Miao Li and Mihai Anitescu
— Attack models include inverse gradient approach, Optimization-based approach like
Deep Leakage from Gradients (DLG) and Solving a sequence of linear equations in
the R-Gap(Recursive Gradient Attack On Privacy)

= Develop and apply a methodology for providing tiered levels of privacy assurance for a
privacy-preserving federated learning framework, while validating the security of the
overall system against risks such as model poisoning/corruption, denial of service, or
intentional prevention of convergence

— Joint work with Argonne’s Cyber team (Blakely et al.)

14 Argonne &




APPLYING APPFL IN BIOMEDICINE
APPLICATIONS & CHALLENGES
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BIOMEDICAL APPLICATIONS

Detection of COVID-19 from Chest X-Rays

Prediction of age from ECGs to use in models
predicting risk for a CVD event

7%, U.S. DEPARTMENT OF _ Argonne National Laboratory is a 16
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DETECTION OF COVID-19 FROM ﬁﬁ M I DRC

C H EST X-RAYS MEDICAL IMAGING AND DATA RESOURCE CENTER.

F==3 THE UNIVERSITY OF

o CHICAGO Argonne &

= Datasets:
— ANL-COVID: the o
dataset is B
aggregated from ~
multiple open- 2
source datasets a
— Uchicago- <
COVID: private | 3 —— Local Model 1 (AUC = 0.75)
dat t' lected = 0.2 —— Local Model 2 (AUC = 0.82)
atase _CO ecle // Federated Model (AUC = 0.91)
by UChicago 0_% . . . .
.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Results from initial proof of principle
experiments show improved performance
() ENERGY 03 ks Argonne &



TRAINING DATA /CLASS DISTRIBUTION

ANL- COVID19 +/- 13992+/16490- 200+/200-  200+/200-
Uchicago — COVID19 +/- 974+/5336- 244+/1334- 305+/1667-

Training set at ANL is roughly 5 times larger than the training set at

UChicago/MIDRC

MEDICAL IMAGING AND DATA RESOURCE CENTER.
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DETECTION OF COVID-19 FROM CHEST X-RAYS

. . n n .
Validation accuracy at ANL Client Since the ratio ;1 >> 72 the client

outputs_CovidDataset_ServerFedAvg_Adam_funcy. sdavg_covid_covid19_anl_uchicago at AN L ( 1 ) haS m Ore i nfl u e n Ce!
. 7 |\ Table 3. Statistic of the datasets used in the COVID-19 chest X-ray
. image recognition experiment.
- s Client Train Val Test | Total
' o COVID-ANL | 30482 400 400 | 31282
2 , COVID-UChicago | 6310 1578 1972 | 9860
) Table 4. Testing accuracy of the COVID-19 chest X-ray image
] recognition models.
L R S S A . Testing Set
Global step \ Global step Training Dataset COVID-ANL | COVID-UChicago
COVID-ANL (single) 89.25 -
COVID-UChicago (single) - 82.20
Validation accuracy at Uchicago Client COVID-ANL+UChicago (Fed. Avg.) | 8475 o141
(@ ENERGY U2 19 Argonne &




OVERVIEW OF ECG USECASE E<BROAD

= Chronologic age can be a poor predictor of lifetime CVD risk, particularly
among younger individuals

= Augmenting with additional variables can help to refine these estimates,
but still ignore the component of variation explained by age

= Replacing with more biological proxies for age, such as from ECGs, can
resolve these issues

= ECGs are typically not shared across, or sometimes even within, institutions

nal Laboratory s a
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WORST PERFORMING ECG: 21-22 YEARS OLDER

COMPARED TO CHRONOLOGICAL AGE EZ BROAD

INSTITUTE

Predicted: 78.342468 Real: 56.861546

-as -0s
MWWMW 0 /\___.,J e J,,\_.__J —~ h —~ .J A__—J e Sy ,’\_,J ~
o5 a5

00204 060851012 14 15 18 20 22 24 26 28 30 32 34 36 3840 42 44 46 45 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

How does this age-proxy affect disease risk?
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REGRESSED AGE IMPROVES PREDICTIVE POWER FOR
YOUNGER AND HARDER-TO-PREDICT SUBJECTS

1.0-

09-

0.8- Score
O -6 PCE
>
< -§- PCE.pred

b -6 PRS

06-

0.5-

4550 50-55 55-60 60-65 65-70 70-75
Age

Urbut et al. (In preparation)
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TRAINING DATA /CLASS DISTRIBUTION Argonne &

Biological Aging Prediction from ECG Signal EgBROAD

INSTITUTE

= Training Data Details
— ECG-ANL: 80,569 ECGs in PhysioNet dataset
— ECG-Broad: private dataset with 37,623 ECGs collected from the UK Biobank

= Age at the time of ECG reading is computed as DOB - date of reading

U.S. DEPARTMENT OF  Argonne National Laboratory s a 23
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BIOLOGICAL AGING PREDICTION FROM ECG SIGNAL

Training with FL on two clients

—— broad-ecg

00 —wwama | FL can learn a global model that performs
relative well on both datasets

250 A

Table 1. Statistic of the datasets used in the biological aging pre-
diction from ECG signal experiment.

200

Val Loss

Dataset Train Val Test | Total
ECG-ANL | 64518 7905 7905 | 80328
ECG-Broad | 33140 4143 4143 | 41426

150 1

100 1

Table 2. Testing MSE error of the biological aging prediction from
ECG signal models.

——
1234567 8 91011121314151617 1819202122 23242526272829 Te_gﬁng Set

ovet e Training Dataset ECG-ANL | ECG-Broad
Best MSE on ECG-ANL = 125.00 ECG-ANL (single) 109.95 224.48
_ — ECG-Broad (single) 22541 38.93
Best MSE on ECG-Broad = 41.70 ECG-ANL+Broad (FedAvg) 125.00 41.70

Argonn
USS. Dej
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LESSONS LEARNED

= Federated learning (FL) models can be unfair

= FL models can be biased towards clients that have a
larger number of samples é
= Alternatives for FedAvg are being investigated to o\ X?::Q‘;“;‘ifz;!&f’;:
ensure fairness when using PPFL (Agnostic federated
learning methods and biomedical adaptation) Whossster oS o hears sbout
good housing? in STEM?
= Adapting with the distribution shift among groups of m At sl el
clients - S =/

— Balancing the number of training samples by
adding more samples/ using data augmentation
— Data regularization through normalization

, Examples of how bias in machine learning can
techniques

affect our daily lives.

25 Argonne &
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CONCLUSION

Privacy Preserving Analysis and Learning in Secure and Distributed Enclaves and Exascale
systems (PALISADE-X)

= Dataset Shift challenge in Al are real
— Models don’t do well when applying in settings different from settings and data used in
training
— Bigger challenge in Biomedicine where data is not shared because of policy issues
= We presented PALISADE-X where we
— Developed APPFL (Argonne Privacy-Preserving Federated Learning) framework that
implements end-to-end secure framework that leverages differential privacy algorithms
along with capabilities to leverage heterogenous HPC resources easily
— We discussed how we integrated APPFL framework with our existing computing and data
infrastructure (i.e., ABLE, SEAL, HPCrypt, funcX, and DLHub) with focus on validating and
evaluating APPFL framework by using the multi-institutional biomedical datasets

= We presented results and lessons learned when applying APPFL to Biomedical datasets

7%, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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