Understanding the ComplReaction Model

In a single compartment, C is converted to D with rate constant Gc2d, and D is converted back to C with rate constant Gd2c. The governing equations are:

$$dC/dt = -(G_{c2d}/V) \cdot C + (G_{d2c}/V) \cdot D$$

$$dD/dt = +(G_{c2d}/V) \cdot C - (G_{d2c}/V) \cdot D$$
,

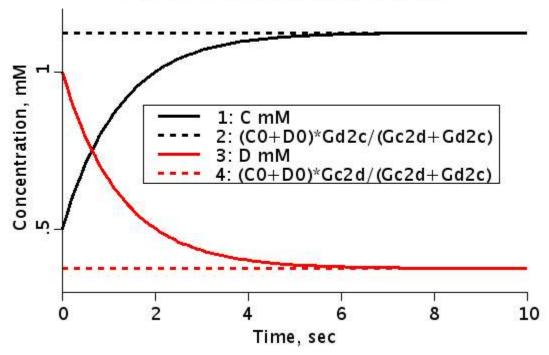
with initial conditions

$$C(0){=}C_{\scriptscriptstyle 0}$$
 and $D(0){=}D_{\scriptscriptstyle 0}$.

The analytic solutions are given by

$$C_{\textit{analytic}} \! = \! \frac{(G_{\textit{d2c}} \cdot (C_0 + D_0) - (G_{\textit{c2d}} \cdot C_0 - G_{\textit{d2c}} \cdot D_0) \cdot \exp\left(-(G_{\textit{c2d}} + G_{\textit{d2c}}) \cdot t/V)\right)}{(G_{\textit{c2d}} + G_{\textit{d2c}})}$$

$$D_{analytic} = \frac{(G_{c2d} \cdot (C_0 + D_0) - (G_{c2d} \cdot C_0 - G_{d2c} \cdot D_0) \cdot \exp(-(G_{c2d} + G_{d2c}) \cdot t/V))}{(G_{c2d} + G_{d2c})} \quad .$$


Figures and Explanations

Questions:

- (1) What are the concentrations of C and D at long time?
- (2) If the volume is increased, does the time when concentration C equals D increase, stay the same, or decrease?
- (3) At steady state what is the flux of C to D in units of micromoles/sec?

Figure 1: Steady State: Default parameter set

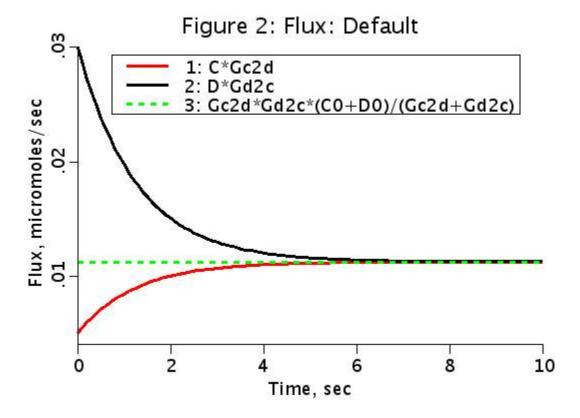
Figure 1: Steady State: Default

Concentration of C (black solid line) and D (red solid line) are plotted as functions of time. The asymptotic limits at long time are plotted as dashed lines. The rate constants and compartmental volume are given as

$$Gc2d = 0.01 \text{ ml/sec}$$

 $Gd2c = 0.03 \text{ ml/sec}$
 $V = 0.05 \text{ ml}$

Substance	Initial Concentration	Asymptotic Concentration
С	0.5 mM	1.125 mM
D	1.0 mM	0.375 mM


The sum of the concentrations is 1.5 mM. Since C is produced 3 times faster than D, the concentration of C is 3/4*1.5 mM, and D=1/4*1.5 mM.

This can also be shown by solving the combination of the steady state equation and the mass conservation statement

for C and D.

Use Run LOOPS, increasing the volume. What happens to the time when concentration C equals D? Why?

Figure 2: Flux: Default parameter set

The flux of C to D (red solid line) and D to C (black solid line) is plotted as a function of time. The two fluxes are not zero at large time, they are equal. The flux for C to D is given as

This value is plotted as the horizontal dashed green line.