
Blood-Tissue Exchange Models Tutorial

Introduction

We have already seen the simple compartment models for flow, exchange, reaction, and 
consumption. The compartment models are described mathematically with ordinary differential 
equations. These differential equations depend only on time. An assumption of compartment models is 
that their contents are instantaneously well mixed. For the one compartment model with flow, the 
concentration at the outflow is the same everywhere inside the compartment. There are no gradients. 
Diffusion in the compartment is assumed to be infinite.

The approximate dimensions of a capillary are 5 to 8 um in diameter and 1000 um in length. For 
simple molecules in water the diffusion coefficient is approximately 10−5 cm2/sec. It would take 
1000 seconds for a simple molecule in water to diffuse from one end of the capillary to the other end. 
The compartmental assumption that diffusion is infinite is not valid on short time scales.

Deriving the governing partial differential equation for a region with flow

We introduce partial differential equations in time and one spatial dimension. We usually call 
the spatial dimension “x”. What follows next is the development of the partial differential equations for 
multiple regions.

Consider a flow carrying a concentration of a metabolite, C through a tube. In a small region of 
the tube, we write the equation for mass conservation in one dimension as: 
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where V is the volume, assumed constant, and D is the diffusion coefficient.  The partial differential 
equation is similar to the equation for the one compartment model with flow with the addition of the 
diffusion term. The derivative on the left hand side of this equation is known as the “material 
derivative” or “Lagrangian derivative”and is equal to the local rate of change plus the advection of a 
gradient (See any standard text on fluid dynamics for a full explanation):
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where U is the velocity of the fluid. The advection of the gradient is subtracted from both sides giving
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Simplifying the velocity of the flow multiplying the volume as
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where Area is the cross sectional area of the capillary and L is its length, and dividing both sides by the 



volume, V, yields
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This equation in JSim's Mathematical Modeling Language (MML) is written as

C:t = ­(Flow*L/V)*C:x + Sources/V – Sinks/V + (D*C:x):x; 

Comparison with ODE model formulation

How does the partial differential equation compare with the ordinary differential equation for a 
stirred tank? Consider the simple case with advection and no diffusion, sources or sinks.  The ordinary 
differential equation is given as
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Partial differential equations for a two region model

The typical equations for a two region model with exchange and consumption are given by
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In MML, they are written as
C1:t =­(Flow*L/V1)*C1:x+(PS/V1)*(C2­C1)­(G1/V1)*C1+D1*C1:x:x;
C2:t=                   (PS/V2)*(C1­C2)–(G2/V2)*C2+D2*C2:x:x;



NOTA BENE:
It was assumed above that the diffusion coefficients are constant. However, this is not necessary 
and the diffusion terms can be written as (D*C:x):x, where D is not constant.
The stagnant region does not have an advection term.
The exchange term is divided by V1 in the first equation and V2 in the second equation.
The diffusion term in the second equation is mandatory, even if the diffusion coefficient, D2 is 
zero (e.g. the second region indicates stationary binding sites, stationary transporter sites, etc.) 
Omitting the diffusion term causes the system of the two partial differential equations to 
become uncoupled and the second equation is treated as a set of ordinary differential equations 
with unpredictable results.

Boundary Conditions
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written in MML as

when(x=x.min) ­(Flow*L/V)*(C­Cin) + D*C:x=0.;  // Flow>0
Corresponding right outflow (Neumann) boundary condition is
when(x=x.max) C:x=0;
The PDE is given as
C:t = ­(Flow*L/V)*C:x + D*C:x:x;

Right inflow total flux boundary condition is written in MML as
when(x=x.max) ­(Flow*L/V)*(C­Cin) + D*C:x=0.;  // Flow<0
Corresponding left outflow (Neumann) boundary condition  is
when(x=x.min) C:x=0;
The PDE is given as
C:t = ­(Flow*L/V)*C:x + D*C:x:x;

No flux (Neumann) boundary conditions (usually for non-flowing regions)
when(x=x.min) C:x=0;
when(x=x.max) C:x=0;

Initial Conditions

Initial conditions are usually given as either
when(t=t.min) C=0;
or
when(t=t.min) C=C0(x);
where C0 is either given as a constant or a function of x.

If the first form is used, the initial condition is assumed to be a function of x, and a parameter is 
generated, C_ _init(x) with the value of 0 (zero) which can be replaced by a function generator.

Oscillating Flows
An oscillating flow problem is modeled in BTEX10_OscillatingFlow.proj. 



Putting it all together
The typical regions for these type of transport problems are plasma (p), endothelial cells (ec), the 
interstitial fluid region (isf),parenchymal cells (pc), and mitochondria (mito). 

The exchange rates between the regions are given as PSg for the gap between the plasma and the 
interstitial fluid region; Psecl for the barrier between the endothelial cell and the plasma on the lumenal 
side (facing the lumen or capillary) of the endothelial cell; PSeca for the barrier between the endothelial 
cell and the interstitial fluid region on the ablumenal side (facing away from the lumen or capillary) of 
the endothelial cell; PSpc for the barrier between the interstitial fluid region and the parenchymal cell; 
and PSmito for the barrier between the parenchymal cell and the mitochondria.

Consumption rates in these regions are given as Gp, Gec, Gisf, Gpc, and Gmito.

Diffusion rates are given as Dp, Dec, Disf, Dpc, and Dmito.

The plasma volume is given as Vp. All the other volumes are considered to be volumes of distribution, 
that is they may be larger than the physical volumes associated with the regions to account for the 
affinity of a metabolite in a particular region, such as oxygen in the red blood cell. The volumes of 
distribution are given as V'isf, V'ec, V'pc, and V'mito, but usually spelledas Visfp, Vecp, Vpcp, and 
Vmitop, where the p stands for the prime.
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Cp:t = Fp*L/Vp*Cp:x ­Gp/Vp*Cp + Dp*Cp:x:x       + Psg/Vp*(Cisf­Cp)
                                                + Psecl/Vp*(Cec­Cp);

Cisf:t =     ­Gisf/Visfp*Cisf + Disf*Cisf:x:x   + PSg/Visfp*(Cp­Cisf) 
                                                + Pseca/Visfp*(Cec­Cisf)
                                                + PSpc/Visfp*(Cpc­Cisf);

Cec:t =         ­Gec/Vecp*Cec + Dec*Cec:x:x     + Psecl/Vecp*(Cp­Cec) 
                                                + PSeca/Vecp*(Cisf­Cec);

Cpc:t =         ­Gpc/Vpcp*Cpc + Dpc*Cpc:x:x     + Pspc/Vpcp*(Cisf­Cpc) 
                                                + Psmito/Vpcp*(Cmito­Cpc);

Cmito:t = ­Gmito/Vmitop*Cmito + Dmito*Cmito:x:x + PSmito/Vmitop*(Cpc­Cmito);


